4 research outputs found

    Effect of N-Terminal Peptide Modifications on In Vitro and In Vivo Properties of (177)Lu-Labeled Peptide Analogs Targeting CCK2R.

    No full text
    The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH(2)). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new (177)Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue

    Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates.

    No full text
    Contains fulltext : 153523.pdf (Publisher’s version ) (Open Access)Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA) and human serum for up to seven days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents

    Comparison of Ga-68-Labeled Fusarinine C-Based Multivalent RGD Conjugates and [(68)Ga]NODAGA-RGD-In Vivo Imaging Studies in Human Xenograft Tumors

    Get PDF
    Multimeric arginine-glycine-aspartic acid (RGD) peptides have advantages for imaging integrin ?v?3 expression. Here, we compared the in vitro and in vivo behavior of three different Ga-68-labeled multimeric Fusarinine C-RGD (FSC-RGD) conjugates, whereby RGD was coupled directly, via a succinic acid or PEG linker (FSC(RGDfE)3, FSC(succ-RGD)3, FSC(Mal-RGD)3). The positron emission tomography/X-ray computed tomography (PET/CT) imaging properties were further compared using [(68)Ga]FSC(succ-RGD)3 with the monomeric [(68)Ga]NODAGA-RGD in a murine tumor model.FSC-RGD conjugates were labeled with Ga-68, and stability properties were studied. For in vitro characterization, the partition coefficient, integrin ?v?3 binding affinity, and cell uptake were determined. To characterize the in vivo properties, biodistribution studies and microPET/CT were carried out using mice bearing either human M21/M21-L melanoma or human U87MG glioblastoma tumor xenografts.All FSC-RGD conjugates were quantitatively labeled with Ga-68 within 10 min at RT. The [(68)Ga]FSC-RGD conjugates exhibited high stability and hydrophilic character, with only minor differences between the different conjugates. In vitro and in vivo studies showed enhanced integrin ?v?3 binding affinity, receptor-selective tumor uptake, and rapid renal excretion resulting in good imaging properties.The type of linker between FSC and RGD had no pronounced effect on targeting properties of [(68)Ga]FSC-RGD trimers. In particular, [(68)Ga]FSC(succ-RGD)3 exhibited improved properties compared to [(68)Ga]NODAGA-RGD, making it an alternative for imaging integrin ?v?3 expression

    Transport properties of orbitally hybridized organic semiconductors

    Get PDF
    A microscopic theory based on the orbital hybridization model via single orbital approximation is developed to calculate the current variation in organic semiconductors that are coupled to the external orbits from the environment. The charge transfer resulted from the orbital hybridization between the environment and the organic semiconductor rebuilds the energy levels and eventually alters the transport properties of the organic semiconductor. Two parameters in our theory, the orbital energy level of the environment relative to the energy level of organic semiconductor and the orbital hybridization interaction, dominate the current variation in the organic semiconductors. Our results show that the suppression of atomic dimerization due to orbital hybridization gives rise to an increase of electrical conduction in organic semiconductor. Also, after coupling with the environment, the charge-donating organic semiconductors are more conductive than the charge-accepting ones
    corecore