42 research outputs found

    Role of clusterin in cell adhesion during early phases of programmed cell death in P19 embryonic carcinoma cells

    Get PDF
    AbstractThis study explored the role of clusterin in mechanisms of cell adhesion and apoptosis in P19 embryonic carcinoma cells. We found that serum deprivation induced transient but dramatic elevation in cell adhesion strength to the culture substrate and eventually led to apoptotic cell death. The time course of cell-adhesion increase overlapped temporally with the elevation of clusterin mRNA (peak 8 h after serum deprivation). The coincidental elevation of clusterin expression and cell adhesion strength preceded the schedule of apoptotic cell death. Clusterin antiserum partially antagonized cell adhesion, but did not modify the course of apoptosis. These data suggest that clusterin expression may partially control cell adhesion with no influence on apoptosis in P19 cells, under defined conditions

    Protein kinase C anchoring deficit in postmortem brains of Alzheimer's disease patients

    No full text
    Protein kinase C (PKC) has been implicated in the pathophysiology of Alzheimer's disease (AD). The levels of particular isoforms and the activation of PKC are reduced in postmortem brain cortex of AD subjects. Receptors for activated C kinase (RACK) are a family of proteins involved in anchoring activated PKCs to relevant subcellular compartments. Recent evidence has indicated that the impaired activation (translocation) of PKC in the aging brain is associated with a deficit in RACK1, the most well-characterized member of this family. The present study was conducted to determine whether alterations in RACK1 occurred in cortical areas where an impaired translocation of PKC has been demonstrated in AD. Here we report the presence of RACK1 immunoreactivity in human brain frontal cortex for the first time and demonstrate a decrease in RACK1 content in cytosol and membrane extracts in AD when compared with non-AD controls. By comparison, the levels of the RACK1-related PKC beta II were not modified in the same membrane extracts. These observations add a new perspective in understanding the disease-associated defective PKC signal transduction and indicate that a decrease in an anchoring protein for PKC is an additional determinant of this deficit. (C) 1999 Academic Press

    Expression of C5a receptor in mouse brain: Role in signal transduction and neurodegeneration

    No full text
    In this study we explored the potential role of the complement derived anaphylatoxin C5a and the expression of its receptor in mouse brain. Using in situ hybridization, we found that C5a receptor messenger RNA is expressed in mouse brain. In response to intraventricular kainic acid injection, there was marked increase in the C5a receptor messenger RNA expression, particularly in hippocampal formation and cerebral cortex. C5a ligand-binding autoradiography confirmed the functional expression and elevation of the C5a receptor post-lesioning. The expression of C5a receptor messenger RNA in brain was confirmed by northern blot hybridization of total RNA from neuronal and glial cells in vitro. Based on these findings we explored the role of C5a in mechanisms of signal transduction in brain cells. Treatment of primary cultures of mouse astrocytes with human recombinant C5a resulted in the activation of mitogen-activated extracellular signal-regulated protein kinase. This response appeared to be mediated by the C5a receptor since astrocyte cultures derived from C5a receptor knockout mice were not responsive to the treatment. Understanding the regulation of C5a receptor in brain and mechanisms by which pro-inflammatory C5a modulates specific signal transduction pathways in brain cells is crucial to studies of inflammatory mechanisms in neurodegeneration
    corecore