9 research outputs found
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Limb Spicules from the Ground and from Space
We amassed statistics for quiet-sun chromosphere spicules at the limb using
ground-based observations from the Swedish 1-m Solar Telescope on La Palma and
simultaneously from NASA's Transition Region and Coronal Explorer (TRACE)
spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond
resolution obtained after maximizing the ground-based resolution with the
Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained
specific statistics for sizes and motions of over two dozen individual
spicules, based on movies compiled at 50-second cadence for the series of five
wavelengths observed in a very narrow band at H-alpha, on-band and in the red
and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the
SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from
TRACE. The MOMFBD restoration also automatically aligned the images,
facilitating the making of Dopplergrams at each off-band pair. We studied 40
H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we
found that their dynamical and morphological properties fit into the framework
of several previous studies. From a preliminary comparison with spicule
theories, our observations are consistent with a reconnection mechanism for
spicule generation, and with UV spicules being a sheath region surrounding the
H-alpha spicules