104 research outputs found
Functional outcomes of surgery for colon cancer:A systematic review and meta-analysis
Introduction: As survival rates of colon cancer increase, knowledge about functional outcomes is becoming ever more important. The primary aim of this systematic review and meta-analysis was to quantify functional outcomes after surgery for colon cancer. Secondly, we aimed to determine the effect of time to follow-up and type of colectomy on postoperative functional outcomes. Materials and methods: A systematic literature search was performed to identify studies reporting bowel function following surgery for colon cancer. Outcome parameters were bowel function scores and/or prevalence of bowel symptoms. Additionally, the effect of time to follow-up and type of resection was analyzed. Results: In total 26 studies were included, describing bowel function between 3 to 178 months following right hemicolectomy (n = 4207), left hemicolectomy/sigmoid colon resection (n = 4211), and subtotal/total colectomy (n = 161). In 16 studies (61.5%) a bowel function score was used. Pooled prevalence for liquid and solid stool incontinence was 24.1% and 6.9%, respectively. The most prevalent constipation-associated symptoms were incomplete evacuation and obstructive, difficult emptying (33.3% and 31.4%, respectively). Major Low Anterior Resection Syndrome was present in 21.1%. No differences between time to follow-up or type of colectomy were found. Conclusion: Bowel function problems following surgery for colon cancer are common, show no improvement over time and do not depend on the type of colectomy. Apart from fecal incontinence, constipation-associated symptoms are also highly prevalent. Therefore, more attention should be paid to all possible aspects of bowel dysfunction following surgery for colon cancer and targeted treatment should commence promptly
No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial
Background: Transcranial direct current stimulation (tDCS) has emerged as a non-invasive brain stimulation technique. Most studies show that anodal tDCS increases cortical excitability. However, this effect has been found to be highly variable. Objective: To test the effect of anodal tDCS on cortical excitability and the interaction effect of two participant-specific factors that may explain individual differences in sensitivity to anodal tDCS: the Brain Derived Neurotrophic Factor Val66Met polymorphism (BDNF genotype) and the latency difference between anterior-posterior and lateromedial TMS pulses (APLM latency). Methods: In 62 healthy participants, cortical excitability over the left motor cortex was measured before and after anodal tDCS at 2 mA for 20 min in a pre-registered, double-blind, randomized, placebo-controlled trial with repeated measures. Results: We did not find a main effect of anodal tDCS, nor an interaction effect of the participant-specific predictors. Moreover, further analyses did not provide evidence for the existence of responders and non-responders. Conclusion: This study indicates that anodal tDCS at 2 mA for 20 min may not reliably affect cortical excitability
Evidence for charge localization in the ferromagnetic phase of La_(1-x)Ca_(x)MnO_3 from High real-space-resolution x-ray diffraction
High real-space-resolution atomic pair distribution functions of
La_(1-x)Ca_(x)MnO_3 (x=0.12, 0.25 and 0.33) have been measured using
high-energy x-ray powder diffraction to study the size and shape of the MnO_6
octahedron as a function of temperature and doping. In the paramagnetic
insulating phase we find evidence for three distinct bond-lengths (~ 1.88, 1.95
and 2.15A) which we ascribe to Mn^{4+}-O, Mn^{3+}-O short and Mn^{3+}-O long
bonds respectively. In the ferromagnetic metallic (FM) phase, for x=0.33 and
T=20K, we find a single Mn-O bond-length; however, as the metal-insulator
transition is approached either by increasing T or decreasing x, intensity
progressively appears around r=2.15 and in the region 1.8 - 1.9A suggesting the
appearance of Mn^{3+}-O long bonds and short Mn^{4+}-O bonds. This is strong
evidence that charge localized and delocalized phases coexist close to the
metal-insulator transition in the FM phase.Comment: 8 pages, 8 postscript figures, submitted to Phys. Rev.
TMS motor mapping: Comparing the absolute reliability of digital reconstruction methods to the golden standard
Background: Changes in transcranial magnetic stimulation motor map parameters can be used to quantify plasticity in the human motor cortex. The golden standard uses a counting analysis of motor evoked potentials (MEPs) acquired with a predefined grid. Recently, digital reconstruction methods have been proposed, allowing MEPs to be acquired with a faster pseudorandom procedure. However, the reliability of these reconstruction methods has never been compared to the golden standard. Objective: To compare the absolute reliability of the reconstruction methods with the golden standard. Methods: In 21 healthy subjects, both grid and pseudorandom acquisition were performed twice on the first day and once on the second day. The standard error of measurement was calculated for the counting analysis and the digital reconstructions. Results: The standard error of measurement was at least equal using digital reconstructions. Conclusion: Pseudorandom acquisition and digital reconstruction can be used in intervention studies without sacrificing reliability
Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning
Background: Cerebellar transcranial direct current stimulation has been reported to enhance motor associative learning and motor adaptation, holding promise for clinical application in patients with movement disorders. However, behavioral benefits from cerebellar tDCS have been inconsistent. Objective: Identifying determinants of treatment success is necessary. BDNF Val66Met is a candidate determinant, because the polymorphism is associated with motor skill learning and BDNF is thought to mediate tDCS effects. Methods: We undertook two cerebellar tDCS studies in subjects genotyped for BDNF Val66Met. Subjects performed an eyeblink conditioning task and received sham, anodal or cathodal tDCS (N = 117, between-subjects design) or a vestibulo-ocular reflex adaptation task and received sham and anodal tDCS (N = 51 subjects, within-subjects design). Performance was quantified as a learning parameter from 0 to 100%. We investigated (1) the distribution of the learning parameter with mixture modeling presented as the mean (M), standard deviation (S) and proportion (P) of the groups, and (2) the role of BDNF Val66Met and cerebellar tDCS using linear regression presented as the regression coefficients (B) and odds ratios (OR) with equally-tailed intervals (ETIs). Results: For the eyeblink conditioning task, we found distinct groups of learners (MLearner = 67.2%; SLearner = 14.7%; PLearner = 61.6%) and non-learners (MNon-learner = 14.2%; SNon-learner = 8.0%; PNon-learner = 38.4%). Carriers of the BDNF Val66Met polymorphism were more likely to be learners (OR = 2.7 [1.2 6.2]). Within the group of learners, anodal tDCS supported eyeblink conditioning in BDNF Val66Met non-carriers (B = 11.9% 95%ETI = [0.8 23.0]%), but not in carriers (B = 1.0% 95%ETI = [-10.2 12.1]%). For the vestibulo-ocular reflex adaptation task, we found no effect of BDNF Val66Met (B = −2.0% 95%ETI = [-8.7 4.7]%) or anodal tDCS in either carriers (B = 3.4% 95%ETI = [-3.2 9.5]%) or non-carriers (B = 0.6% 95%ETI = [-3.4 4.8]%). Finally, we performed additional saccade and visuomotor adaptation experiments (N = 72) to investigate the general role of BDNF Val66Met in cerebellum-dependent learning and found no difference between carriers and non-carriers for both saccade (B = 1.0% 95%ETI = [-8.6 10.6]%) and visuomotor adaptation (B = 2.7% 95%ETI = [-2.5 7.9]%). Conclusions: The specific role for BDNF Val66Met in eyeblink conditioning, but not vestibulo-ocular reflex adaptation, saccade adaptation or visuomotor adaptation could be related to dominance of the role of simple spike suppression of cerebellar Purkinje cells with a high baseline firing frequency in eyeblink conditioning. Susceptibility of non-carriers to anodal tDCS in eyeblink conditioning might be explained by a relatively larger effect of tDCS-induced subthreshold depolarization in this group, which might increase the spontaneous firing frequency up to the level of that of the carriers
Recommended from our members
Gaia Early Data Release 3: Gaia photometric science alerts
Context. Since July 2014, the Gaia mission has been engaged in a high-spatial-resolution, time-resolved, precise, accurate astrometric, and photometric survey of the entire sky. Aims. We present the Gaia Science Alerts project, which has been in operation since 1 June 2016. We describe the system which has been developed to enable the discovery and publication of transient photometric events as seen by Gaia. Methods. We outline the data handling, timings, and performances, and we describe the transient detection algorithms and filtering procedures needed to manage the high false alarm rate. We identify two classes of events: (1) sources which are new to Gaia and (2) Gaia sources which have undergone a significant brightening or fading. Validation of the Gaia transit astrometry and photometry was performed, followed by testing of the source environment to minimise contamination from Solar System objects, bright stars, and fainter near-neighbours. Results. We show that the Gaia Science Alerts project suffers from very low contamination, that is there are very few false-positives. We find that the external completeness for supernovae, CE = 0.46, is dominated by the Gaia scanning law and the requirement of detections from both fields-of-view. Where we have two or more scans the internal completeness is CI = 0.79 at 3 arcsec or larger from the centres of galaxies, but it drops closer in, especially within 1 arcsec. Conclusions. The per-Transit photometry for Gaia transients is precise to 1% at G = 13, and 3% at G = 19. The per-Transit astrometry is accurate to 55 mas when compared to Gaia DR2. The Gaia Science Alerts project is one of the most homogeneous and productive transient surveys in operation, and it is the only survey which covers the whole sky at high spatial resolution (subarcsecond), including the Galactic plane and bulge. © S. T. Hodgkin et al. 2021
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
- …