1,548 research outputs found

    UNCERTAINTY ANALYSIS OF SHIP MODEL RESISTANCE TEST IN ACTUAL SEAS

    Get PDF
    Resistance test is a classical method used to study ship performance. In this study, the uncertainty of large-scale ship model resistance test in actual seas is analyzed. Considering the difference between these trials and traditional test in towing tanks, this study first uses the ITTC 2014 procedure based on GUM to calculate the systematic error in the test. The parameters that affect the test accuracy are also estimated. Then, the program based on the Monte Carlo method is verified, and the differences between the two methods are compared. In this study, the uncertainty sources in the test are quantitatively analyzed, and the results will be helpful for improving the ship model test scheme in actual seas

    Collective Properties of Low-lying Octupole Excitations in 82208Pb126^{208}_{82}Pb_{126}, 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}

    Full text link
    The octupole strengths of ÎČ\beta-stable nucleus 82208Pb126^{208}_{82}Pb_{126}, a neutron skin nucleus 2060Ca40^{60}_{20}Ca_{40} and a neutron drip line nucleus 828O20^{28}_{8}O_{20} are studied by using the self-consistent Hartree-Fock calculation plus the random phase approximation (RPA) with Skyrme interaction. The collective properties of low-lying excitations are analyzed by using particle-vibration coupling. The results show that the lowest isoscalar states above threshold in 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20} are the superpositions of collective excitations and unperturbed transitions from bound state to nonresonance states. For these three nuclei, both the low-lying isoscalar states and giant isoscalar resonance carry isovector strength. The ratio B(IV)/B(IS) is checked. It is found that, for 82208Pb126^{208}_{82}Pb_{126}, the ratios are equal to (N−ZA)2(\frac{N-Z}{A})^2 in good accuracy, while for 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}, the ratios are much larger than (N−ZA)2(\frac{N-Z}{A})^2. This results from the excess neutrons with small binding energies in 2060Ca40^{60}_{20}Ca_{40} and 828O20^{28}_{8}O_{20}.Comment: 14 pages, 10 figure

    X-ray and neutron diffraction studies of coupled structural phase transitions in DyBaCo2_{2}O5.5_{5.5}

    Full text link
    A structural transition at T≈322T\approx 322 K from the PmmmPmmm to PmmaPmma phase is found to coincide with an anomaly of resistivity. Another structural phase transition doubling the lattice parameter cc, which has been postulated earlier to accompany a low-temperature magnetic transition in TbBaCo2_{2}O5.5_{5.5}, is observed in a single crystal DbBaCo2_{2}O5.5_{5.5} by means of the X-ray and neutron diffraction. The low temperature phase does not belong to the space group PccaPcca that has been chosen earlier as the highest subgroup of the PmmaPmma. The transition is of the first order with the temperature hysteresis, between T≈100T\approx 100 and T≈200T\approx 200 K, which probably explains anomalous magnetic properties in this temperature range.Comment: 6 pages, 4 figure

    Thermal correction to the Casimir force, radiative heat transfer, and an experiment

    Full text link
    The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.

    Surface-impedance approach solves problems with the thermal Casimir force between real metals

    Full text link
    The surface impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradictions with thermodynamics which are specific to the usual Lifshitz formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of the ad hoc prescriptions intensively discussed in the recent literature. As an example, the computations of the Casimir free energy between two gold plates are performed at different separations and temperatures. It is argued that the surface impedance approach lays a reliable framework for the future measurements of the thermal Casimir force.Comment: 21 pages, 3 figures, to appear in Phys. Rev.

    Predicting leptonic CP violation in the light of Daya Bay result

    Full text link
    In the light of the recent Daya Bay result the reactor angle is about 9 degrees, we reconsider the model presented in arXiv:1005.3482 showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et al and the reactor angle to be the central value of Daya Bay, the predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348

    Deficiency and excess of groundwater iodine and their health associations

    Get PDF
    More than two billion people worldwide have suffered thyroid disorders from either iodine deficiency or excess. By creating the national map of groundwater iodine throughout China, we reveal the spatial responses of diverse health risks to iodine in continental groundwater. Greater non-carcinogenic risks relevant to lower iodine more likely occur in the areas of higher altitude, while those associated with high groundwater iodine are concentrated in the areas suffered from transgressions enhanced by land over-use and intensive anthropogenic overexploitation. The potential roles of groundwater iodine species are also explored: iodide might be associated with subclinical hypothyroidism particularly in higher iodine regions, whereas iodate impacts on thyroid risks in presence of universal salt iodization exhibit high uncertainties in lower iodine regions. This implies that accurate iodine supply depending on spatial heterogeneity and dietary iodine structure optimization are highly needed to mitigate thyroid risks in iodine-deficient and -excess areas globally

    Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

    Full text link
    We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200

    Higher order conductivity corrections to the Casimir force

    Get PDF
    The finite conductivity corrections to the Casimir force in two configurations are calculated in the third and fourth orders in relative penetration depth of electromagnetic zero oscillations into the metal. The obtained analytical perturbation results are compared with recent computations. Applications to the modern experiments are discussed.Comment: 15 pages, 4 figure

    Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells

    Full text link
    By studying the time and spatial evolution of a pulse of the spin polarization in nn-type semiconductor quantum wells, we highlight the importance of the off-diagonal spin coherence in spin diffusion and transport. Spin oscillations and spin polarization reverse along the the direction of spin diffusion in the absence of the applied magnetic field are predicted from our investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
    • 

    corecore