124 research outputs found

    Existence of superposition solutions for pulse propagation in nonlinear resonant media

    Get PDF
    Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of these excitations are specific to the resonant media, with energy levels in the configurations of Λ\Lambda and NN and arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered identities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as single pulse-trains, with widely different amplitudes, which can lead to substantially different field intensities and population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde

    Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors

    Full text link
    We predict the existence of spatiotemporal solitons (``light bullets'') in two-dimensional self-induced transparency media embedded in a Bragg grating. The "bullets" are found in an approximate analytical form, their stability being confirmed by direct simulations. These findings suggest new possibilities for signal transmission control and self-trapping of light.Comment: RevTex, 3 pages, 2 figures, to be published in PR

    Lyapunov Potential Description for Laser Dynamics

    Get PDF
    We describe the dynamical behavior of both class A and class B lasers in terms of a Lyapunov potential. For class A lasers we use the potential to analyze both deterministic and stochastic dynamics. In the stochastic case it is found that the phase of the electric field drifts with time in the steady state. For class B lasers, the potential obtained is valid in the absence of noise. In this case, a general expression relating the period of the relaxation oscillations to the potential is found. We have included in this expression the terms corresponding to the gain saturation and the mean value of the spontaneously emitted power, which were not considered previously. The validity of this expression is also discussed and a semi-empirical relation giving the period of the relaxation oscillations far from the stationary state is proposed and checked against numerical simulations.Comment: 13 pages (including 7 figures) LaTeX file. To appear in Phys Rev.A (June 1999

    Constant Curvature Coefficients and Exact Solutions in Fractional Gravity and Geometric Mechanics

    Full text link
    We study fractional configurations in gravity theories and Lagrange mechanics. The approach is based on Caputo fractional derivative which gives zero for actions on constants. We elaborate fractional geometric models of physical interactions and we formulate a method of nonholonomic deformations to other types of fractional derivatives. The main result of this paper consists in a proof that for corresponding classes of nonholonomic distributions a large class of physical theories are modelled as nonholonomic manifolds with constant matrix curvature. This allows us to encode the fractional dynamics of interactions and constraints into the geometry of curve flows and solitonic hierarchies.Comment: latex2e, 11pt, 27 pages, the variant accepted to CEJP; added and up-dated reference

    Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    Full text link
    Experimental and numerical investigation of single-beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent medium response to broadband polychromatic radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in Phys. Rev.

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Commemorating the First World War in Britain: A Cultural Legacy of Media Remembrance

    Get PDF
    One of the often-overlooked legacies of the First World War is how the conflict established the media’s role in remembrance. In the years that have followed, media’s circulation of iconic images of national and local commemoration have enabled individuals to engage with public remembrance. This article takes a historical approach to First World War remembrance in Britain, looking at how the practices and meaning of remembrance became established, although they were never fixed but instead constantly shifting, reinvented and contested. They are also gendered, in remembrance, as in war, women, are often seen as to be playing supportive roles; yet within media texts, women have always found spaces to exert influence over who is remembered and how, as memories jostle for prominence

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
    • …
    corecore