11 research outputs found
Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics
Antibiotics may affect both primary producers and decomposers, potentially disrupting ecosystem processes. Hence, it is essential to assess the impact of antibiotics on aquatic ecosystems. The aim of the present study was therefore to evaluate the potential of a recently developed test for detecting antibiotics in animal tissue, the Nouws Antibiotic Test (NAT), as a sensitive bioassay to assess the effects of antibiotics in water. To this purpose, we determined the toxicity of sulphamethoxazole, trimethoprim, flumequine, tylosin, streptomycin, and oxytetracycline, using the NAT adapted for water exposure. The sensitivity of the NAT was compared to that of bioassays with bacteria (Microtox), cyanobacteria and green algae. In the Microtox test with Vibrio fischeri as test organism, no effects were observed for any of the test compounds. For three of the six antibiotics tested, the cyanobacteria were more vulnerable than the green algae when using photosynthetic efficiency as an endpoint. The lowest EC50 values for four out of six tested antibiotics were obtained using the NAT bacterial bioassay. The bacterial plate system responded to antibiotics at concentrations in the mu g L-1 and lower mg L-1 range and, moreover, each plate proved to be specifically sensitive to the antibiotics group it was designed for. It is concluded that the NAT bioassay adapted for water exposure is a sensitive test to determine the presence of antibiotics in water. The ability of this test to distinguish five major antibiotic groups is a very strong additional value
Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics
Antibiotics may affect both primary producers and decomposers, potentially disrupting ecosystem processes. Hence, it is essential to assess the impact of antibiotics on aquatic ecosystems. The aim of the present study was therefore to evaluate the potential of a recently developed test for detecting antibiotics in animal tissue, the Nouws Antibiotic Test (NAT), as a sensitive bioassay to assess the effects of antibiotics in water. To this purpose, we determined the toxicity of sulphamethoxazole, trimethoprim, flumequine, tylosin, streptomycin, and oxytetracycline, using the NAT adapted for water exposure. The sensitivity of the NAT was compared to that of bioassays with bacteria (Microtox), cyanobacteria and green algae. In the Microtox test with Vibrio fischeri as test organism, no effects were observed for any of the test compounds. For three of the six antibiotics tested, the cyanobacteria were more vulnerable than the green algae when using photosynthetic efficiency as an endpoint. The lowest EC50 values for four out of six tested antibiotics were obtained using the NAT bacterial bioassay. The bacterial plate system responded to antibiotics at concentrations in the mu g L-1 and lower mg L-1 range and, moreover, each plate proved to be specifically sensitive to the antibiotics group it was designed for. It is concluded that the NAT bioassay adapted for water exposure is a sensitive test to determine the presence of antibiotics in water. The ability of this test to distinguish five major antibiotic groups is a very strong additional value
Reproductive development of yellow perch (Perca flavescens) exposed to oil sands-affected waters
In similar experiments conducted in 1996 and 2009, yellow perch (Perca flavescens) were stocked into two experimental systems: a demonstration lake where oil sands fine tailings were capped with natural water and a lake in a watershed containing bitumen-bearing sodic clays. In both experiments, yellow perch were captured in May from a nearby reservoir and released into the experimental ponds. Perch were recaptured in the experimental systems, the source lake, and two reference lakes in late September and lethally sampled to examine reproductive parameters. In the 1996 experiment, gonad size and steroid hormones were not affected in either pond environment. In the 2009 experiment, male perch in the water-capped tailings pond showed a significant reduction in the testicular development and reductions in circulating testosterone and 11-ketotestosterone, while no reductions were seen in the second experimental pond. No changes were observed in ovarian size or circulating steroid levels in female perch. In the pond containing tailings, the release of water from underlying tailings caused approximately a twofold increase in salinity, alkalinity, and naphthenic acids, and a pH increase from 8.4 to 9.4 over the 13-year period of the study. In the pond influenced by unextracted oil sands materials, total dissolved solids, major ions, and pH did not change substantially. However, naphthenic acids in this system dropped more than twofold post-watershed reclamation. Because the selective reproductive effect observed in male perch in the experimental end-pit lake were accompanied by increases in naphthenic acids, alkalinity, and pH, a specific cause cannot be determined. The present study adds to the evidence, suggesting the presence of endocrine-disrupting substances in oil sands