22 research outputs found

    Decoherence, Re-coherence, and the Black Hole Information Paradox

    Get PDF
    We analyze a system consisting of an oscillator coupled to a field. With the field traced out as an environment, the oscillator loses coherence on a very short {\it decoherence timescale}; but, on a much longer {\it relaxation timescale}, predictably evolves into a unique, pure (ground) state. This example of {\it re-coherence} has interesting implications both for the interpretation of quantum theory and for the loss of information during black hole evaporation. We examine these implications by investigating the intermediate and final states of the quantum field, treated as an open system coupled to an unobserved oscillator.Comment: 23 pages, 2 figures included, figures 3.1 - 3.3 available at http://qso.lanl.gov/papers/Papers.htm

    Non-equilibrium Gross-Pitaevskii dynamics of boson lattice models

    Full text link
    Motivated by recent experiments on trapped ultra-cold bosonic atoms in an optical lattice potential, we consider the non-equilibrium dynamic properties of such bosonic systems for a number of experimentally relevant situations. When the number of bosons per lattice site is large, there is a wide parameter regime where the effective boson interactions are strong, but the ground state remains a superfluid (and not a Mott insulator): we describe the conditions under which the dynamics in this regime can be described by a discrete Gross-Pitaevskii equation. We describe the evolution of the phase coherence after the system is initially prepared in a Mott insulating state, and then allowed to evolve after a sudden change in parameters places it in a regime with a superfluid ground state. We also consider initial conditions with a "pi phase" imprint on a superfluid ground state (i.e. the initial phases of neighboring wells differ by pi), and discuss the subsequent appearance of density wave order and "Schrodinger cat" states.Comment: 16 pages, 11 figures; (v2) added reference

    Decoherence in Bose-Einstein Condensates: towards Bigger and Better Schroedinger Cats

    Full text link
    We consider a quantum superposition of Bose-Einstein condensates in two immiscible internal states. A decoherence rate for the resulting Schroedinger cat is calculated and shown to be a significant threat to this macroscopic quantum superposition of BEC's. An experimental scenario is outlined where the decoherence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and "symmetrization" of the environment which allow for the Schroedinger cat to be an approximate pointer states.Comment: 12 pages in RevTex; improved presentation; a new comment on decoherence-free pointer subspaces in BEC; accepted in Phys.Rev.

    Dynamic splitting of a Bose-Einstein Condensate

    Full text link
    We study the dynamic process of splitting a condensate by raising a potential barrier in the center of a harmonic trap. We use a two-mode model to describe the phase coherence between the two halves of the condensate. Furthermore, we explicitly consider the spatial dependence of the mode funtions, which varies depending on the potential barrier. This allows to get the tunneling coupling between the two wells and the on-site energy as a function of the barrier height. Moreover we can get some insight on the collective modes which are excited by raising the barrier. We describe the internal and external degrees of freedom by variational ansatz. We distinguish the possible regimes as a function of the characteristic parameters of the problem and identify the adiabaticity conditions.Comment: 17 pages, 8 figure

    Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates

    Full text link
    The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For EC/EJ1E_{C}/E_{J}\ll 1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ1E_{C}/E_{J}\gg 1, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as EC/EJ1E_{C}/E_{J}\sim 1.Comment: to appear in Phys. Rev. A, 2 figure

    Persistent currents in a circular array of Bose-Einstein condensates

    Full text link
    A ring-shaped array of Bose-Einstein condensed atomic gases can display circular currents if the relative phase of neighboring condensates becomes locked to certain values. It is shown that, irrespective of the mechanism responsible for generating these states, only a restricted set of currents are stable, depending on the number of condensates, on the interaction and tunneling energies, and on the total number of particles. Different instabilities due to quasiparticle excitations are characterized and possible experimental setups for testing the stability prediction are also discussed.Comment: 7 pages, REVTex

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199

    Assessing connective understanding with visual and verbal tasks

    No full text
    .The role of temporal and causal connectives is relevant in reading comprehension. Children with comprehension difficulties have problems in interpreting these connectives (e.g. Amidon, 1976; Feagans, 1980; Pyykk\uf4nen, Niemi and J\ue4rvikivi, 2003; Trosborg, 1982). The Adaptive Learning System (ALS) TERENCE aims to develop children\u2019s comprehension through the use of adaptive visual and verbal games. Within this framework, the purpose of this study was to assess connective comprehension with three visual and verbal tasks. Two hundred and eight English and Italian children participated in this study. The main results show that the use of pictures does not always support comprehension. Moreover, less skilled children perform better at simultaneous connective \u201cwhile\u201d compared to the temporal sequential connectives (before, after) and causal (because) ones
    corecore