11 research outputs found
Recommended from our members
A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry
Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput
Recommended from our members
EPR dosimetry of whole deciduous tooth using a constant rotation goniometer and background subtraction with a dentine standard
We report here a rapid method of electron paramagnetic resonance (EPR) dosimetry of dental enamel which will allow screening of whole deciduous teeth of children following a nuclear accident. The technique requires virtually no sample preparation and is capable of measuring doses of less than 100 mGy. Teeth may be scanned for threshold dose levels without the need for added calibration doses and those of particular interest may be more accurately examined using the additive dose method. The success of the technique lies in the elimination of anisotropic effects by rotation of spectra from the empty cavity and a standard background tooth. Normalization using in- cavity Mn++ standards is also employed
Recommended from our members
Preparation-induced errors in EPR dosimetry of enamel: pre- and post-crushing sensitivity
Errors in dose estimation as a function of grain size for tooth enamel has been previously shown for beta irradiation after crushing. We tested the effect of gamma radiation applied to specimens before and after crushing. We extend the previous work in that we found that post-crushing irradiation altered the slope of the dose-response curve of the hydroxyapatite signal and produced a grain-size dependent offset. No changes in the slope of the dose-response curve were seen in enamel caps irradiated before crushing
Recommended from our members
Properties of light induced EPR signals in enamel and their possible interference with gamma-induced signals
Exposure of enamel to UV light (sunlight and artificial) results in EPR signals with g-factors of 2.0018 (perpendicular),1.9975 (parallel), 2.0045, 20052, and 2.0083. The first two signals correspond to the components of the radiation induced signal and the third signal corresponds to the native signal reported in dosimetry and dating studies. The remaining signals were found to be stable and sensitive to both gamma and sunlight exposure. Their sensitivity response to light and radiation was considerably different which gives rise to the possibility that the g=2.0052 and g=2.0083 signals might be used as indicators of the dose resulting from light exposure
Recommended from our members
Influence of crushing and additive irradiation procedures on EPR dosimetry of tooth enamel
The effect of the crushing and additive dose procedures used in EPR dosimetry of enamel was studied on the signals with g-factors of 2. 0045 and g, = 2.0018, g. = 1.9975. Eight fractions, ranging in size from <75 micrometers to 2 mm, were prepared from one tooth. Two cases were investigated: crushing of a non-irradiated sample and of a sample previously irradiated (6 Gy from `Co gamma ray source). In the non-irradiated study, the intensity of the native signal at 2.0045 in by circa 1.75 times as the grain size decreased from maximum to minimum. A small in radiation sensitivity (< 8%) was also observed with decreasing grain size. In the irradiated samples, crushing resulted in slight variations of reconstructed doses from expected values, but the worst possible case (grain sizes < 75 micron) showed that additional errors were less than 10%. The radiation sensitivity of enamel measured immediately after exposure is underestimated. It increases by about 15% in the first month. Based on the decomposition of the observed spectra, a new interpretation of transient signals 1108 is proposed which explains the above phenomena. Recommendations about how to use this interpretation in retrospective EPR dosimetry are given
Recommended from our members
EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method
Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation