12 research outputs found

    Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series

    No full text
    In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible

    On the Representation, Learning and Transfer of Spatio-Temporal Movement Characteristics

    No full text
    In this paper we present a learning-based approach for the modelling of complex movement sequences. Based on the method of Spatio-Temporal Morphable Models (STMMS. We derive a hierarchical algorithm that, in a first step, identifies automatically movement elements in movement sequences based on a coarse spatio-temporal description, and in a second step models these movement primitives by approximation through linear combinations of learned example movement trajectories. We describe the different steps of the algorithm and show how it can be applied for modelling and synthesis of complex sequences of human movements that contain movement elements with variable style. The proposed method is demonstrated on different applications of movement representation relevant for imitation learning of movement styles in humanoid robotics

    Missing data estimation using polynomial kernels

    Get PDF
    In this paper, we deal with the problem of partially observed objects. These objects are defined by a set of points and their shape variations are represented by a statistical model. We presents two model in this paper : a linear model based on PCA and a non-linear model based on KPCA. The present work attempts to localize of non visible parts of an object, from the visible part and from the model, using the variability represented by the models. Both are applied to synthesis data and to cephalometric data with good results

    Missing Data Estimation Using Polynomial Kernels

    No full text

    Learning to Find Pre-Images

    No full text
    We consider the problem of reconstructing patterns from a feature map. Learning algorithms using kernels to operate in a reproducing kernel Hilbert space (RKHS) express their solutions in terms of input points mapped into the RKHS. We introduce a technique based on kernel principal component analysis and regression to reconstruct corresponding patterns in the input space (aka pre-images) and review its performance in several applications requiring the construction of pre-images. The introduced technique avoids difficult and/or unstable numerical optimization, is easy to implement and, unlike previous methods, permits the computation of pre-images in discrete input spaces

    Learning to Find Graph Pre-Images

    No full text
    The recent development of graph kernel functions has made it possible to apply well-established machine learning methods to graphs. However, to allow for analyses that yield a graph as a result, it is necessary to solve the so-called pre-image problem: to reconstruct a graph from its feature space representation induced by the kernel. Here, we suggest a practical solution to this problem

    Efficient Approximations for Support Vector Machines in Object Detection

    No full text
    We present a new approximation scheme for support vector decision functions in object detection. In the present approach we are building on an existing algorithm where the set of support vectors is replaced by a smaller so-called reduced set of synthetic points. Instead of finding the reduced set via unconstrained optimization, we impose a structural constraint on the synthetic vectors such that the resulting approximation can be evaluated via separable filters. Applications that require scanning an entire image can benefit from this representation: when using separable filters, the average computational complexity for evaluating a reduced set vector on a test patch of size (h x w) drops from O(hw) to O(h+w). We show experimental results on handwritten digits and face detection

    Multivariate Regression via Stiefel Manifold Constraints

    No full text
    We introduce a learning technique for regression between high-dimensional spaces. Standard methods typically reduce this task to many one-dimensional problems, with each output dimension considered independently. By contrast, in our approach the feature construction and the regression estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint. A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements, but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to this objective, and dependence between the outputs can be exploited
    corecore