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Abstract. In this paper, we deal with the problem of partially observed objects. 
These objects are defined by a set of points and their shape variations are 
represented by a statistical model. We present two models in this paper: a linear 
model based on PCA and a non-linear model based on KPCA. The present 
work attempts to localize of non visible parts of an object, from the visible part 
and from the model, using the variability represented by the models. Both are 
applied to synthesis data and to cephalometric data with good results. 

1   Introduction 

DATA compression, reconstruction, estimation and de-noising are common 
applications of linear Principal Component Analysis (PCA) [1,2]  and Kernel PCA 
[3,4]. In the latter case, this is a non-trivial task as the results provided by Kernel PCA 
live in some high dimensional feature space. The main problem of KPCA 
reconstruction and denoising scheme is to retrieve the data in the input space whose 
image in Kernel Space is known : in fact, every point of the kernel space does not 
have a pre image in the input space. This is the pre-image problem [3-6]. 

In this paper, the estimation of a partially observed object in the input space, using a 
model learned in the feature space F.. is addressed. Some part of the observation is 
known. To solve this problem, spatial relationships between the known part of the 
observation and the unknown one are represented in a statistical model and used to 
localize the unknown part. Those relationships are automatically learned in the model. 
Like in KPCA reconstruction problem, there are two possible approaches to solve this 
problem. 

The first one use an explicit mapping function ϕ, the second one use Kernel PCA 
making ϕ implicit. In the first case estimation consists in computing the inverse of ϕ 
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(step 2 in Fig. 1) : a global model (polynomial, sigmoid) of the relations is an a-priori 
knowledge in this case. In the second case the problem is much more complicate (step 
5 in Fig. 1).  

 

Fig. 1. Three different observations space 

The paper is organized as follow : First, the extension of the PCA model to spatial 
relationship representation and partial object recognition is presented. Next, the 
KPCA model is described and the extension to partial object localization is given. 
Polynomial Kernels are detailed and results are illustrated with synthetic and real 
examples.  

2   Linear PCA Model 

The extension of the linear PCA model [7] defined here is an elegant way to take into 
account spatial relations between landmarks and can also estimate the unknown part 
of the partially visible or occulted model. 

Principal Component Analysis is an orthogonal basis transformation, where the 
new basis is found by diagonalizing the covariance matrix of a dataset.  

Let    Ti
= (x

i1
, x

in
,..., y

i1
, y

in
) ∈R2n , be the locations of n landmarks. Using PCA, we 

can write   Ti
≈ T + Φb , where   T is the mean shape of the pattern, Φ = (φ

1
| ... | φ

t
)  is 

a   (n + m) × (n + m)  matrix composed with the eigenvectors of the covariance matrix 

S of the centered data and b is a vector of dimension t : b = Φ t (T
i

− T ) . The 

dimension t of the vector b is the number of eigenvectors with the largest eigenvalues. 

In classical uses of PCA, such as de-noising, t<n+m is chosen by λ
i

i =1

t

∑ ≥ 0.95 λ
i

i = 1

m + n

∑ . 

The vector b is then a good approximation of the original dataset and every vector Ti 

can be represented with the  tt < n + m
values of the vector b. 

Under this hypothesis, if some points (says t=n points) are known, the remaining 
unknown points can be determined using PCA. Without any approximations, we can 
write: 
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This is a linear system with m equations and n+m unknowns that can not be 
resolved. Since PCA can represent the dataset with t<n+m values, suppose t<=n, the 

unknown vector (b
1
,K ,b

n
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m
)  can be estimated by the following system: 
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In this framework, a linear approximation of spatial relations between known and 
unknown points are explicitly determined from the eigenvectors of the covariance 
matrix. 

3   KPCA Models 

Kernel PCA can be considered as a natural generalization of linear PCA and is very 
well suited to extract interesting non-linear structures in the data. Closely related to 
methods applied in Support Vector Machines, it has proved useful for various 
applications, such as denoising and as a pre-processing step in regressions problems. 

3.1   Kernel PCA and Reconstruction 

Kernel PCA first map the data from an input space I into a feature space F via a 
(usually non-linear) function and then perform linear PCA on the mapped data. As the 
feature space F can be very high dimensional, kernel PCA employs Mercer kernels 
instead of carrying out the mapping explicitly such as Gaussian kernels 

  
k(x, y) = exp(− x − y

2

/ c)  and polynomial kernels k(x, y) = (1 + x • y)d . 
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Consider  data vector x and  y in the  input space I = R2n . The non-linear 

mapping    Φ : R2n → F is defined such that : Φ(x) • Φ( y) ≡ k(x, y)  where • is the 
vector dot product in the high dimensional feature space F.  

To perform PCA in feature space, we need to find Eigenvalues λ > 0 and 

Eigenvectors V ∈F\{0} satisfying λV = CV with C = Φ(x
i
)Φ(x

i
)T , the 

covariance matrix computed on the mapped data. Defining the NxN Kernel matrice 

K: 
  
K

ij
≡ Φ(x

i
) • Φ(x

j
) , the problem becomes :  

 Nλα = Kα      (1) 
To extract non-linear principal components βi of a test point 

r
x , the projection onto 

the k-th component is computed by: 

β
k

= (V k • Φ(x)) = α
i
k k(x, x

i
)

i=1

N

∑    (2) 

To reconstruct the Φ -image of a vector x from its projections βk onto the first n 
principal component in F (assuming that the Eigenvectors are ordered by decreasing 

Eigenvalue size), a projection operator P
n

is defined by  

  
P

n
Φ(x) = β

k
V k

k =1

n

∑     (3) 

When observations are not centered, the centered Φ(x) are used : 

Φ(x) ≡ Φ(x) − 1
N

Φ(xi )
i=1

N

∑  ∀r
x ∈Rn .                                     (4) 

In term of dot product, the Gramm matrix replaces the Kernel matrix: 

K
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ij

−
1

N
K

ip
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N

∑ −
1

N
K
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N

∑ +
1

N 2
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pq
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3.2   Missing Data Estimation 

The problem to solve is the reconstruction of partially unknown examples from the 
KPCA model and from the known part of the data. 

Let    z = (c
1
,K ,c

n
, x

1
,K ,x

m
)  be an example to reconstruct, with the n first 

coordinates known. The statistical model can be seen as some variability parameters 
(b in PCA model, β in KPCA model) around a mean shape. Finding the unknown part 
of x is equivalent to find the shape belonging to the model (i.e. variability parameters) 
whose first coordinates are given by the known part of x. However we are interested 
in an estimation in the input space (x1,x2,…xm) rather than in feature space 
(β1,β2,…βk). So the solution is given by a vector satisfying P

n
Φ(c) = Φ(z) , which 

is the pre-image with (x1,x2,…xm,β1,β2,…βk) as unknown. Remember that in the 
classical pre-image, the feature space coordinates (β1,β2,…βk) are known.  
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one to the model, is found by minimizing ρ(x) = Φ(z) − P
N
Φ(c)

2
, i.e. 
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2
         (6) 

Using equations (2) and (3), kernel notation is introduced to obtain: 
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The projection of c and z on the KPCA space are the same : 
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This is the general case and minimize ρ(z) depends upon the chosen kernel. This 
equation can be solved by numerical optimization, but this function presents in 
general a great number of local minima, sometimes numerically instable. Now, the 
paper is focused on the polynomial kernels.  

3.3   Estimation for Polynomial Kernel 

Let pose    z = (c
1
,K ,c

n
, x

1
,K , x

m
) as the known part of z is the known part of x. For 

polynomial kernels, we have to minimize  
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which is a polynomial of degree 2d with m unknowns. The mapping ϕ is easily 
retrieved and is explained using a linear combination of monomial and dot product. 

3.3.1   Polynomial Degree One 
As the observation must be centered in the Feature space k(x, y) = (x • y) . The 

mapping in this case is linear. 
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For an extremum, the gradient has to vanish, which lead to a necessary condition: 
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Not surprisingly, this is the classical PCA solution related in §II.  

 

When the vector has no pre-image z, the vector z, such as its image is the nearest 
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3.3.2   Polynomial Degree 2 
The mapping ϕ is given by 
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The gradient has to vanish:  
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Finding the roots of this polynomial  
is done by classical numerical method such as newton’s one or brent’sone. Note that 
the solution must be close enough to the mean value of the model and between 3 
times the eigenvalue around the mean. This is used as initial value and/or bracketed 
range. Finding the solution of the general equation (eq 9) give simultaneously the 
unknown input space data (unknown part of object) and the variability parameter β of 
the model. 

4   Results 

4.1   Synthesis Data 

In this first experiment, a data set of three points (i.e. six values) is generated (fig 2). 
Three parameters are needed to perfectly describe these data, i.e. 3 is the theoretical 
optimal number of variability parameters for PCA and KPCA methods.  

1. In these synthesis data, one point is a constant. It should be easily 
predicted, simply because its mean values is a constant.  

2. Variations of a point through the examples are linear. Its trace on the figure 
3 is a line. The linear PCA and the Kernel PCA should predict it with a 
good accuracy. 

3. Variations of the last point through the examples are non linear. This point 
describes an ellipse. A first set uses a full ellipse (on the left side of figure 
2) with some indetermination on y-axis when x is known. A second set 
uses a half ellipse (on the right side of figure 2) where this indetermination 
is missing. 

Independent uniform noise is added to every position. 

The PCA and KPCA models are trained on a set of 50 samples. The test set is 
composed of 300 samples.  
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Fig. 2. 3 points with linear and non linear relationships. The circles are initial data set, crosses 
are reconstructed data set when 3 values are missing in an example. 

In this experiment, the last value of each sample is suppressed and this missing data 
is estimated by our model. First, the value of the function to minimize (eq 12) has a 
clearly visible minima, and the width of this minima is the width of the added noise 

Second, The error of this estimated unknown value is summarized in the table 1, 
with respect to the number of variability parameters retained, for 3 methods : 

1. Polynomial Kernel minimization, described here : variability parameters 
and pre-image are simultaneously estimated. 

2. Explicit second degree polynomial projection with PCA : variability 
parameters are first estimated, following by pre-image computation 

3. Classical PCA 

Table 1. Estimation error for a varying number of parameters 

Variability 
Parameters 

1 2 3 4 5 

Kernel minimization  478.94 54.811 60.662 58.685 56.088 
Polynomial function 505.1 598.09 592.09 816.96 962.14 
PCA 3504.7 27639 19549 39786 4.952e+005 

 

The results exhibit a large advantage to the non linear method : the non linear aspect 
of the data is well extracted  and represented by these models. Linear PCA cannot 
deal with such non linear data. The second method, in which the variability 
parameters are first estimated and then the pre-image computed is less powerful than 
the use of the kernel trick and the estimation of the variability parameters and the 
unknown values in one step. 

Another Comparison between linear and Kernel PCA can be achieved with the 
accuracy of the reconstructed points when the number of these reconstructed points. 
In the previous example, 3 parameters are needed to describe the data. So, 3 values 
can be retrieved by this method and the number of retained variability parameters 
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varies from 1 to 3 in the linear model, from 1 to 9 in the non linear model. Figure 3 
plots the error of global reconstruction when 3 values are missing, with the number of 
variability parameters used on the x-axis. It becomes clear that non linear method has 
a large advantage with a better reconstruction error, but with an increased 
computational cost because more parameters are used. 
 

 

Fig. 3. Reconstruction error for 3 missing points 

4.2   Real Data 

The goal of cephalometry [2,8] is the study of the skull growth of young children in 
order to improve orthodontic therapy. It is based on the landmarking of cephalometrics 
points on tele-radiography, two dimensional X-ray images of the sagittal skull 
projection (figure 4). These points are used for the computation of features, such as the 
length or the angle between lines. The interpretation of these features is used to 
diagnose the deviation of the patient form from an ideal one. It is also used to evaluate 
the results of different orthodontic treatment. Cephalometric landmarks are linked to 
the shape of the cranial contour. In this context, the cranial contour is sampled and the 
landmarks are learned together with the sampled contour [9]. 

To landmark a new cephalogram, knowing the contour, the unknown part of the 
model (landmarks) has to be retrieved, with the statistical model and the known part 
(sampled contour). On these real data, linear PCA and KPCA give the same results, 
with 4mm of mean error between the real positions of the landmarks and the estimated 
landmarks. Note that intra-expert variability is about 1mn. This means that the data are 
non really non linear, or that the non-linearity in these data cannot be represented by a 
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polynomial of degree 2. This is quite more than a previous non linear and affine 
invariant version [8], which use an ad-hoc projection function, with 2mn of mean error. 

 

Fig. 4. cephalogram, cranial contour and real (white) and estimated (black) landmarks 

5   Conclusion 

In this paper, a polynomial kernel based shape model has been presented. This non 
linear model is used to resolve the problem of missing data in an image in a statistical 
framework.  We found equation 12, which can be numerically solve in the general case. 
Shape parameters and missing data are then estimated. With polynomial kernel, we have 
to found the roots of a polynomial equation and the solution more robust. The 
polynomial kernel based model has been compared to classical linear PCA on synthetic 
and real data. When a non linear relationship exists between data, the kernel model has 
better accuracy than the linear one, with a larger computational cost.  
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