3 research outputs found

    Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt

    Get PDF
    This study focused primarily on the effects of various polymer modifications on the low-temperature cracking performance of asphalt binders and resultant mixtures. Two air-blown bitumens were blended with four polymers with or without the addition of polyphosphoric acid (PPA). The low-temperature properties of the neat bitumens and the modified binders were characterized using bending beam rheometer (BBR). The prismatic samples of dense graded asphalt mixtures with the same content of different binders of 4.7% by weight were tested on direct tension at constant strain rate. The low-temperature cracking of the mixtures was also evaluated by tensile stress restrained specimen test (TSRST). The results indicated that the low-temperature parameters were dependent on base bitumen and on polymer modification. For all tested binders, the Superpave criterion E0.30. Polymer modification showed significant benefits as compared to the corresponding base bitumen for direct tensile strength of asphalt mix at low temperatures. Addition of PPA reduced the strength at −30°C while raised at −20°C and −10°C. The BBR limiting binder stiffness temperature was close to the TSRST critical asphalt mix cracking temperature. Keywords: Asphalt pavement, Polymer modification, Thermal stress, Low-temperature cracking, Tensile strength, Critical temperatur

    nanostructured bitumen with nanocarbon

    Get PDF
    Physical and chemical indicators of bitumen quality of grade BND 70/100 with the added carbon nanopowder 2% by weight have been studied by laboratory test methods and analysis. High reaction ability of nanopowder particles and concentration of excess surface and internal energy in them have been determined, which provide the increase of low-temperature resistance, aggregate strength, and improvement of rheological properties of nanostructured bitumen. Essential structure variation has been proved: the increase of asphaltenes and oils content for 9% and 7.2% respectively due to the decrease of resins for 16.2% by weight. Methods have been discussed for preparing a liquid nanocarbon mix, adding of the mix into bitumen and homogenization of the bitumen. Some economic indicators have been represented which influence essentially the reduction for the cost value of the nanostructure bitumen
    corecore