4 research outputs found

    Charting a roadmap for heart failure biomarker studies

    Get PDF
    Heart failure is a syndrome with a pathophysiological basis that can be traced to dysfunction in several interconnected molecular pathways. Identification of biomarkers of heart failure that allow measurement of the disease on a molecular level has resulted in enthusiasm for their use in prognostication and selection of appropriate therapies. However, despite considerable amounts of information available on numerous biomarkers, inconsistent research methodologies and lack of clinical correlations have made bench-to-bedside translations rare and left the literature with countless publications of varied quality. There is a need for a systematic and collaborative approach aimed at definitively studying the clinical benefits of novel biomarkers. In this review, on the basis of input from academia, industry, and governmental agencies, we propose a systematized approach based on adherence to specific quality measures for studies looking to augment current prediction model or use biomarkers to tailor therapeutics. We suggest that study quality, rather than results, should determine publication and propose a system for grading biomarker studies. We outline the need for collaboration between clinical investigators and statisticians to introduce more advanced statistical methodologies into the field of biomarkers that would allow for data from a large number of variables to be distilled into clinically actionable information. Lastly, we propose the creation of a heart failure biomarker consortium that would allow for a comprehensive list of biomarkers to be concomitantly analyzed in a pooled sample of randomized clinical trials and hypotheses to be generated for testing in biomarker-guided trials. Such a consortium could collaborate in sharing samples to identify biomarkers, undertake meta-analyses on completed trials, and spearhead clinical trials to test the clinical utility of new biomarkers

    Genetic variants associated with cardiac structure and function: A meta-analysis and replication of genome-wide association data

    No full text
    Context: Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease. Objective: To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples. Design, Setting, and Participants: Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n=12 612 individuals of European ancestry; 55% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n=4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10-7to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort. Main Outcome Measures: Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size. Results: In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1%of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1%-3% of trait variance). Conclusions: We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease

    Antiinflammatory therapy with canakinumab for atherosclerotic disease

    No full text
    BACKGROUND: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. METHODS: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P=0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P=0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P=0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P=0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P=0.31). CONCLUSIONS: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. Copyright © 2017 Massachusetts Medical Society
    corecore