5 research outputs found

    Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schroedinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schroedinger equation and some special and limiting cases are outlined.Comment: 17 pages, no figure

    Construction of the maximal solution of Backus' problem in geodesy and geomagnetism

    No full text
    The (simplified) Backus' Problem (BP) consists in finding a harmonic function u on the domain exterior to the three dimensional unit sphere S, such that u tends to zero at infinity and the norm of the gradient of u takes prescribed values g on S. Except for a change of sign, the solution is not unique in general. However, there is uniqueness of solutions in the class of functions with the additional property that the radial component of the gradient of u on S is nonpositive. This is the geodetically relevant case. If a solution u with this property exists, then u is the maximal solution of the problem (and -u the minimal one). In this paper we propose a method of successive approximations to get this particular solution of BP and prove the convergence for functions g close to a constant function

    Bibliography

    No full text
    corecore