1,362 research outputs found

    Preparation and ferroelectric properties of (124)-oriented SrBi4Ti4O15 ferroelectric thin film on (110)-oriented LaNiO3 electrode

    Full text link
    A (124)-oriented SrBi4Ti4O15 (SBTi) ferroelectric thin film with high volume fraction of {\alpha}SBTi(124)=97% was obtained using a metal organic decomposition process on SiO2/Si substrate coated by (110)-oriented LaNiO3 (LNO) thin film. The remanent polarization and coercive field for (124)-oriented SBTi film are 12.1 {\mu}C/cm2 and 74 kV/cm, respectively. No evident fatigue of (124)-oriented SBTi thin film can be observed after 1{\times}10e9 switching cycles. Besides, the (124)-oriented SBTi film can be uniformly polarized over large areas using a piezoelectric-mode atomic force microscope. Considering that the annealing temperature was 650{\deg}C and the thickness of each deposited layer was merely 30 nm, a long-range epitaxial relationship between SBTi(124) and LNO(110) facets was proposed. The epitaxial relationship was demonstrated based on the crystal structures of SBTi and LNO.Comment: 11 pages, 4 figures, published in Journal of Materials Science: Materials in Electronics (JMSE), 19 (2008), 1031-103

    Chern-Simons Number Diffusion and Hard Thermal Loops on the Lattice

    Get PDF
    We develop a discrete lattice implementation of the hard thermal loop effective action by the method of added auxiliary fields. We use the resulting model to measure the sphaleron rate (topological susceptibility) of Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, and Muller.Comment: 43 pages, 6 figure

    Tunneling effects on impurity spectral function in coupled asymmetric quantum wires

    Full text link
    The impurity spectral function is studied in coupled double quantum wires at finite temperatures. Simple anisotropy in the confinement direction of the wires leads to finite non-diagonal elements of the impurity spectral function matrix. These non-diagonal elements are responsible for tunneling effects and result in pronounced extra peak in the impurity spectral function up to temperatures as high as 20 K.Comment: Accepted in Phys. Rev.

    Coulomb scattering lifetime of a two-dimensional electron gas

    Full text link
    Motivated by a recent tunneling experiment in a double quantum-well system, which reports an anomalously enhanced electronic scattering rate in a clean two-dimensional electron gas, we calculate the inelastic quasiparticle lifetime due to electron-electron interaction in a single loop dynamically screened Coulomb interaction within the random-phase-approximation. We obtain excellent quantitative agreement with the inelastic scattering rates in the tunneling experiment without any adjustable parameter, finding that the reported large (\geq a factor of six) disagreement between theory and experiment arises from quantitative errors in the existing theoretical work and from the off-shell energy dependence of the electron self-energy.Comment: 11 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Birkhoff's Theorem in f(T) Gravity up to the Perturbative Order

    Full text link
    f(T) gravity, a generally modified teleparallel gravity, has become very popular in recent times as it is able to reproduce the unification of inflation and late-time acceleration without the need of a dark energy component or an inflation field. In this present work, we investigate specifically the range of validity of Birkhoff's theorem with the general tetrad field via perturbative approach. At zero order, Birkhoff's theorem is valid and the solution is the well known Schwarzschild-(A)dS metric. Then considering the special case of the diagonal tetrad field, we present a new spherically symmetric solution in the frame of f(T) gravity up to the perturbative order. The results with the diagonal tetrad field satisfy the physical equivalence between the Jordan and the so-called Einstein frames, which are realized via conformal transformation, at least up to the first perturbative order.Comment: 8 pages, no figure. Final version, accepted for publication in EPJ

    Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures

    Full text link
    We calculate the intersubband and intrasubband many-body inelastic Coulomb scattering rates due to electron-electron interaction in two-subband semiconductor quantum wire structures. We analyze our relaxation rates in terms of contributions from inter- and intrasubband charge-density excitations separately. We show that the intersubband (intrasubband) charge-density excitations are primarily responsible for intersubband (intrasubband) inelastic scattering. We identify the contributions to the inelastic scattering rate coming from the emission of the single-particle and the collective excitations individually. We obtain the lifetime of hot electrons injected in each subband as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with Figure

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    Extended Birkhoff's Theorem in the f(T) Gravity

    Full text link
    The f(T) theory, a generally modified teleparallel gravity, has been proposed as an alternative gravity model to account for the dark energy phenomena. Following our previous work [Xin-he Meng and Ying-bin Wang, EPJC(2011), arXiv:1107.0629v1], we prove that the Birkhoff's theorem holds in a more general context, specifically with the off diagonal tetrad case, in this communication letter. Then, we discuss respectively the results of the external vacuum and internal gravitational field in the f(T) gravity framework, as well as the extended meaning of this theorem. We also investigate the validity of the Birkhoff's theorem in the frame of f(T) gravity via conformal transformation by regarding the Brans-Dicke-like scalar as effective matter, and study the equivalence between both Einstein frame and Jordan frame.Comment: 7 pages, 1 figure, submitted to EPJ-C. arXiv admin note: substantial text overlap with arXiv:1107.062

    A geometric theory for 2-D systems including notions of stabilisability

    Get PDF
    In this paper we consider the problem of internally and externally stabilising controlled invariant and output-nulling subspaces for two-dimensional (2-D) Fornasini–Marchesini models, via static feedback. A numerically tractable procedure for computing a stabilising feedback matrix is developed via linear matrix inequality techniques. This is subsequently applied to solve, for the first time, various 2-D disturbance decoupling problems subject to a closed-loop stability constraint
    corecore