12 research outputs found

    Effects of C, Cu and Be substitutions in superconducting MgB2

    Full text link
    Density functional calculations are used to investigate the effects of partial substitutional alloying of the B site in MgB2 with C and Be alone and combined with alloying of the Mg site with Cu. The effect of such substitutions on the electronic structure, electron phonon coupling and superconductivity are discussed. We find that Be substitution for B is unfavorable for superconductivity as it leads to a softer lattice and weaker electron-phonon couplings. Replacement of Mg by Cu leads to an increase in the stiffness and doping level at the same time, while the carrier concentration can be controlled by partial replacement of B by C. We estimate that with full replacement of Mg by Cu and fractional substitution of B by C, Tc values of 50K may be attainable.Comment: 5 pages, 4 figure

    Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study

    Full text link
    A recent experiment by Shimizu et al. has provided evidence of a superconducting phase in hcp Fe under pressure. To study the pressure-dependence of this superconducting phase we have calculated the phonon frequencies and the electron-phonon coupling in hcp Fe as a function of the lattice parameter, using the linear response (LR) scheme and the full potential linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the Eliashberg functions α2F\alpha^2 F indicate that conventional s-wave electron-phonon coupling can definitely account for the appearance of the superconducting phase in hcp Fe. However, the observed change in the transition temperature with increasing pressure is far too rapid compared with the calculated results. For comparison with the linear response results, we have computed the electron-phonon coupling also by using the rigid muffin-tin (RMT) approximation. From both the LR and the RMT results it appears that electron-phonon interaction alone cannot explain the small range of volume over which superconductivity is observed. It is shown that ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from magnetic impurities (spin-ordered clusters) can account for the observed values of the transition temperatures but cannot substantially improve the agreeemnt between the calculated and observed presure/volume range of the superconducting phase. A simplified treatment of p-wave pairing leads to extremely small (102\leq 10^{-2} K) transition temperatures. Thus our calculations seem to rule out both ss- and pp- wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    An Introduction to Data Assimilation and Predictability in Geomagnetism

    No full text
    corecore