7 research outputs found

    Structure of Spinning Particle Suggested by Gravity, Supergravity and Low Energy String Theory

    Get PDF
    The structure of spinning particle suggested by the rotating Kerr-Newman (black hole) solution, super-Kerr-Newman solution and the Kerr-Sen solution to low energy string theory is considered. Main peculiarities of the Kerr spinning particle are discussed: a vortex of twisting principal null congruence, singular ring and the Kerr source representing a rotating relativistic disk of the Compton size. A few stringy structures can be found in the real and complex Kerr geometry. Low-energy string theory predicts the existence of a heterotic string placed on the sharp boundary of this disk. The obtained recently supergeneralization of the Kerr-Newman solution suggests the existence of extra axial singular line and fermionic traveling waves concentrating near these singularities. We discuss briefly a possibility of experimental test of these predictions.Comment: Latex, 8 pages, talk at the International Workshop Spin'99, Prague, 5-11 September, 199

    Gauged motion in general relativity and in Kaluza-Klein theories

    Full text link
    In a recent paper [1] a new generalization of the Killing motion, the {\it gauged motion}, has been introduced for stationary spacetimes where it was shown that the physical symmetries of such spacetimes are well described through this new symmetry. In this article after a more detailed study in the stationary case we present the definition of gauged motion for general spacetimes. The definition is based on the gauged Lie derivative induced by a threading family of observers and the relevant reparametrization invariance. We also extend the gauged motion to the case of Kaluza-Klein theories.Comment: 42 pages, revised version, typos correction along with some minor changes, Revtex forma

    Complex Kerr Geometry and Nonstationary Kerr Solutions

    Full text link
    In the frame of the Kerr-Schild approach, we consider the complex structure of Kerr geometry which is determined by a complex world line of a complex source. The real Kerr geometry is represented as a real slice of this complex structure. The Kerr geometry is generalized to the nonstationary case when the current geometry is determined by a retarded time and is defined by a retarded-time construction via a given complex world line of source. A general exact solution corresponding to arbitrary motion of a spinning source is obtained. The acceleration of the source is accompanied by a lightlike radiation along the principal null congruence. It generalizes to the rotating case the known Kinnersley class of "photon rocket" solutions.Comment: v.3, revtex, 16 pages, one eps-figure, final version (to appear in PRD), added the relation to twistors and algorithm of numerical computations, English is correcte
    corecore