6 research outputs found

    Methionine gamma lyase from clostridium sporogenes increases the anticancer efficacy of doxorubicin on A549 cancer cells in vitro and human cancer xenografts

    No full text
    The anticancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer cells in vitro and in vivo. Doxorubicin (DOX) and MGL were more effective on A549 human lung-cancer growth inhibition than either agent alone in vitro and in vivo. © Springer Science+Business Media, LLC, part of Springer Nature 2019

    Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts

    No full text
    Summary: The anti-cancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer models in vitro and in vivo. The calculated EC50 values for MGL were 4.4 U/ml for A549, 7.5 U/ml for SK-BR3, 2.4 U/ml for SKOV3, and 0.4 U/ml for MCF7 cells. The combination of doxorubicin (DOX) and MGL was more effective for A549 human lung cancer growth inhibition than either agent alone in vitro and in vivo. MGL reduced the EC50 of doxorubicin from 35.9 μg/mL to 0.01–0.265 μg/mL. The growth inhibitory effect of DOX + MGL on A549 xenografts in vivo was reflective of the results obtained in vitro. The inhibition rate of tumor growth in the combined arm was 57%, significantly higher than that in the doxorubicin (p = 0.033)-alone arm. © 2018 Springer Science+Business Media, LLC, part of Springer Natur

    Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts

    No full text
    Summary: The anti-cancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer models in vitro and in vivo. The calculated EC50 values for MGL were 4.4 U/ml for A549, 7.5 U/ml for SK-BR3, 2.4 U/ml for SKOV3, and 0.4 U/ml for MCF7 cells. The combination of doxorubicin (DOX) and MGL was more effective for A549 human lung cancer growth inhibition than either agent alone in vitro and in vivo. MGL reduced the EC50 of doxorubicin from 35.9 μg/mL to 0.01–0.265 μg/mL. The growth inhibitory effect of DOX + MGL on A549 xenografts in vivo was reflective of the results obtained in vitro. The inhibition rate of tumor growth in the combined arm was 57%, significantly higher than that in the doxorubicin (p = 0.033)-alone arm. © 2018 Springer Science+Business Media, LLC, part of Springer Natur

    ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes

    No full text
    The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets.Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer.Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems.This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves.Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect
    corecore