51 research outputs found

    Unresolved problems in superconductivity of CaC6

    Get PDF
    We discuss the current status of the theory of the "high-temperature" superconductivity in intercalated graphites YbC6 and CaC6. We emphasize that while the general picture of conventional, phonon-driven superconductivity has already emerged and is generally accepted, there are still interesting problems with this picture, such as weak-coupling regime inferred from specific heat suggesting coupling exclusively with high-energy carbon phonons coming in direct contradiction with the isotope effect measurements suggesting coupling exclusively with the low-energy intercalant modes. At the same time, the first principle calculations, while explaining Tc, contradict both of the experiments above by predicting equal coupling with both groups of phonons.Comment: Contribution to the Proceedings of the M2S Conference in Dresden, 200

    Lattice dynamics and electron-phonon coupling in transition metal diborides

    Full text link
    The phonon density-of-states of transition metal diborides TMB2 with TM = Ti, V, Ta, Nb and Y has been measured using the technique of inelastic neutron scattering. The experimental data are compared with ab initio density functional calculations whereby an excellent agreement is registered. The calculations thus can be used to obtain electron-phonon spectral functions within the isotropic limit. A comparison to similar data for MgB2 and AlB2 which were subject of prior publications as well as parameters important for the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable

    Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems

    Full text link
    We report several important observations that underscore the distinctions between the constrained-path Monte Carlo method and the continuum and lattice versions of the fixed-node method. The main distinctions stem from the differences in the state space in which the random walk occurs and in the manner in which the random walkers are constrained. One consequence is that in the constrained-path method the so-called mixed estimator for the energy is not an upper bound to the exact energy, as previously claimed. Several ways of producing an energy upper bound are given, and relevant methodological aspects are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Vibrational signature of broken chemical order in a GeS2 glass: a molecular dynamics simulation

    Full text link
    Using density functional molecular dynamics simulations, we analyze the broken chemical order in a GeS2_2 glass and its impact on the dynamical properties of the glass through the in-depth study of the vibrational eigenvectors. We find homopolar bonds and the frequencies of the corresponding modes are in agreement with experimental data. Localized S-S modes and 3-fold coordinated sulfur atoms are found to be at the origin of specific Raman peaks whose origin was not previously clear. Through the ring size statistics we find, during the glass formation, a conversion of 3-membered rings into larger units but also into 2-membered rings whose vibrational signature is in agreement with experiments.Comment: 11 pages, 8 figures; to appear in Phys. Rev.

    Oscillator strengths with pseudopotentials

    Full text link
    The time-dependent local-density approximation (TDLDA) is shown to remain accurate in describing the atomic response of IB elements under the additional approximation of using pseudopotentials to treat the effects of core electrons. This extends the work of Zangwill and Soven who showed the utility of the all-electron TDLDA in the atomic response problem.Comment: 13 pages including 3 Postscript figure

    Ab initio density functional investigation of B_24 cluster: Rings, Tubes, Planes, and Cages

    Get PDF
    We investigate the equilibrium geometries and the systematics of bonding in various isomers of a 24-atom boron cluster using Born-Oppenheimer molecular dynamics within the framework of density functional theory. The isomers studied are the rings, the convex and the quasiplanar structures, the tubes and, the closed structures. A staggered double-ring is found to be the most stable structure amongst the isomers studied. Our calculations reveal that a 24-atom boron cluster does form closed 3-d structures. All isomers show staggered arrangement of nearest neighbor atoms. Such a staggering facilitates sp2sp^2 hybridization in boron cluster. A polarization of bonds between the peripheral atoms in the ring and the planar isomers is also seen. Finally, we discuss the fusion of two boron icosahedra. We find that the fusion occurs when the distance between the two icosahedra is less than a critical distance of about 6.5a.u.Comment: 8 pages, 9 figures in jpeg format Editorially approved for publication in Phys. Rev.

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
    • …
    corecore