9 research outputs found
Physical tests for Random Numbers in Simulations
We propose three physical tests to measure correlations in random numbers
used in Monte Carlo simulations. The first test uses autocorrelation times of
certain physical quantities when the Ising model is simulated with the Wolff
algorithm. The second test is based on random walks, and the third on blocks of
n successive numbers. We apply the tests to show that recent errors in high
precision simulations using generalized feedback shift register algorithms are
due to short range correlations in random number sequences. We also determine
the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-
PYTHIA 6.4 Physics and Manual
The PYTHIA program can be used to generate high-energy-physics `events', i.e.
sets of outgoing particles produced in the interactions between two incoming
particles. The objective is to provide as accurate as possible a representation
of event properties in a wide range of reactions, within and beyond the
Standard Model, with emphasis on those where strong interactions play a role,
directly or indirectly, and therefore multihadronic final states are produced.
The physics is then not understood well enough to give an exact description;
instead the program has to be based on a combination of analytical results and
various QCD-based models. This physics input is summarized here, for areas such
as hard subprocesses, initial- and final-state parton showers, underlying
events and beam remnants, fragmentation and decays, and much more. Furthermore,
extensive information is provided on all program elements: subroutines and
functions, switches and parameters, and particle and process data. This should
allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further
information may be found on the PYTHIA web page:
http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly
deleted section heading for "Physics Processes" reinserted, affecting section
numbering. Minor updates to take into account referee comments and new colour
reconnection option