641 research outputs found

    Orbital-selective Mott transitions in the anisotropic two-band Hubbard model at finite temperatures

    Full text link
    The anisotropic degenerate two-orbital Hubbard model is studied within dynamical mean-field theory at low temperatures. High-precision calculations on the basis of a refined quantum Monte Carlo (QMC) method reveal that two distinct orbital-selective Mott transitions occur for a bandwidth ratio of 2 even in the absence of spin-flip contributions to the Hund exchange. The second transition -- not seen in earlier studies using QMC, iterative perturbation theory, and exact diagonalization -- is clearly exposed in a low-frequency analysis of the self-energy and in local spectra.Comment: 4 pages, 5 figure

    New method for the time calibration of an interferometric radio antenna array

    Get PDF
    Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect high-energy cosmic rays via the radio emission from atmospheric extensive air showers. LOPES is an array of dipole antennas placed within and triggered by the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology, Germany. The antennas are digitally combined to build a radio interferometer by forming a beam into the air shower arrival direction which allows measurements even at low signal-to-noise ratios in individual antennas. This technique requires a precise time calibration. A combination of several calibration steps is used to achieve the necessary timing accuracy of about 1 ns. The group delays of the setup are measured, the frequency dependence of these delays (dispersion) is corrected in the subsequent data analysis, and variations of the delays with time are monitored. We use a transmitting reference antenna, a beacon, which continuously emits sine waves at known frequencies. Variations of the relative delays between the antennas can be detected and corrected for at each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in Nuclear Inst. and Methods in Physics Research, A, available at: http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a

    Single-Particle Dynamics in the Vicinity of the Mott-Hubbard Metal-to-Insulator Transition

    Full text link
    The single-particle dynamics close to a metal-to-insulator transition induced by strong repulsive interaction between the electrons is investigated. The system is described by a half-filled Hubbard model which is treated by dynamic mean-field theory evaluated by high-resolution dynamic density-matrix renormalization. We provide theoretical spectra with momentum resolution which facilitate the comparison to photoelectron spectroscopy.Comment: 22 pages, 24 figures, comprehensive high-resolution study of single electron dynamics around a Mott metal-insulator transition, with momentum resolved spectral densities; slight changes due to referees' suggestion

    Mott-Hubbard Transition and Anderson Localization: Generalized Dynamical Mean-Field Theory Approach

    Full text link
    Density of states, dynamic (optical) conductivity and phase diagram of strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT+\Sigma approximation). Strong correlations are accounted by DMFT, while disorder is taken into account via the appropriate generalization of self-consistent theory of localization. The DMFT effective single impurity problem is solved by numerical renormalization group (NRG) and we consider the three-dimensional system with semi-elliptic density of states. Correlated metal, Mott insulator and correlated Anderson insulator phases are identified via the evolution of density of states and dynamic conductivity, demonstrating both Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of complete zero-temperature phase diagram of Anderson-Hubbard model. Rather unusual is the possibility of disorder induced Mott insulator to metal transition.Comment: 15 pages, 16 figure

    Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions

    Full text link
    The nature of the Mott-Hubbard metal-insulator transition in the infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo simulations down to temperature T=W/140 (W=bandwidth). Calculating with significantly higher precision than in previous work, we show that the hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears. Hence the transition is found to be continuous rather than discontinuous down to at least T=0.325T_{IPT}. We also study the changes in the density of states across the transition, which illustrate that the Fermi liquid breaks down before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st
    corecore