14,953 research outputs found
Neutrino spin oscillations in gravitational fields
We study neutrino spin oscillations in black hole backgrounds. In the case of
a charged black hole, the maximum frequency of oscillations is a monotonically
increasing function of the charge. For a rotating black hole, the maximum
frequency decreases with increasing the angular momentum. In both cases, the
frequency of spin oscillations decreases as the distance from the black hole
grows. As a phenomenological application of our results, we study simple
bipolar neutrino system which is an interesting example of collective neutrino
oscillations. We show that the precession frequency of the flavor pendulum as a
function of the neutrino number density will be higher for a
charged/non-rotating black hole compared with a neutral/rotating black hole
respectively.Comment: Replaced with the version accepted for publication in Gravitation and
Cosmology, Springer. 10 pages. 4 figure
Topology of Knotted Optical Vortices
Optical vortices as topological objects exist ubiquitously in nature. In this
paper, by making use of the -mapping topological current theory, we
investigate the topology in the closed and knotted optical vortices. The
topological inner structure of the optical vortices are obtained, and the
linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P.
R. China
Disclination in Lorentz Space-Time
The disclination in Lorentz space-time is studied in detail by means of
topological properties of -mapping. It is found the space-time
disclination can be described in term of a Dirac spinor. The size of the
disclination, which is proved to be the difference of two sets of su(2)% -like
monopoles expressed by two mixed spinors, is quantized topologically in terms
of topological invariantswinding number. The projection of space-time
disclination density along an antisymmetric tensor field is characterized by
Brouwer degree and Hopf index.Comment: Revtex, 7 page
Effect of Transition Magnetic Moments on Collective Supernova Neutrino Oscillations
We study the effect of Majorana transition magnetic moments on the flavor
evolution of neutrinos and antineutrinos inside the core of Type-II supernova
explosions. We find non-trivial collective oscillation effects relating
neutrinos and antineutrinos of different flavors, even if one restricts the
discussion to Majorana transition electromagnetic moment values that are not
much larger than those expected from standard model interactions and nonzero
neutrino Majorana masses. This appears to be, to the best of our knowledge, the
only potentially observable phenomenon sensitive to such small values of
Majorana transition magnetic moments. We briefly comment on the effect of Dirac
transition magnetic moments and on the consequences of our results for future
observations of the flux of neutrinos of different flavors from a nearby
supernova explosion.Comment: 11 pages,appendix added, version accepted in JCA
Temperature driven structural phase transition for trapped ions and its experimental detection
A Wigner crystal formed with trapped ion can undergo structural phase
transition, which is determined only by the mechanical conditions on a
classical level. Instead of this classical result, we show that through
consideration of quantum and thermal fluctuation, a structural phase transition
can be solely driven by change of the system's temperature. We determine a
finite-temperature phase diagram for trapped ions using the renormalization
group method and the path integral formalism, and propose an experimental
scheme to observe the predicted temperature-driven structural phase transition,
which is well within the reach of the current ion trap technology.Comment: 4 pages, 5 figure
Electrical properties of breast cancer cells from impedance measurement of cell suspensions
Impedance spectroscopy of biological cells has been used to monitor cell status, e.g. cell proliferation, viability, etc. It is also a fundamental method for the study of the electrical properties of cells which has been utilised for cell identification in investigations of cell behaviour in the presence of an applied electric field, e.g. electroporation. There are two standard methods for impedance measurement on cells. The use of microelectrodes for single cell impedance measurement is one method to realise the measurement, but the variations between individual cells introduce significant measurement errors. Another method to measure electrical properties is by the measurement of cell suspensions, i.e. a group of cells within a culture medium or buffer. This paper presents an investigation of the impedance of normal and cancerous breast cells in suspension using the Maxwell-Wagner mixture theory to analyse the results and extract the electrical parameters of a single cell. The results show that normal and different stages of cancer breast cells can be distinguished by the conductivity presented by each cell. © 2010 IOP Publishing Ltd
Recommended from our members
Deep learning for cardiac image segmentation: A review
Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US) and major anatomical structures of interest (ventricles, atria and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research
Entanglement purification of multi-mode quantum states
An iterative random procedure is considered allowing an entanglement
purification of a class of multi-mode quantum states. In certain cases, a
complete purification may be achieved using only a single signal state
preparation. A physical implementation based on beam splitter arrays and
non-linear elements is suggested. The influence of loss is analyzed in the
example of a purification of entangled N-mode coherent states.Comment: 6 pages, 3 eps-figures, using revtex
Quantum superposition of multiple clones and the novel cloning machine
we envisage a novel quantum cloning machine, which takes an input state and
produces an output state whose success branch can exist in a linear
superposition of multiple copies of the input state and the failure branch
exist in a superposition of composite state independent of the input state. We
prove that unknown non-orthogonal states chosen from a set can evolve
into a linear superposition of multiple clones by a unitary process if and only
if the states are linearly independent. We derive a bound on the success
probability of the novel cloning machine. We argue that the deterministic and
probabilistic clonings are special cases of our novel cloning machine.Comment: Two column, 5 pages, Latex, some additions, minor changes. Phys. Rev.
Lett. (To appear, 1999
- …