15,424 research outputs found

    Simulation of Ultra-Relativistic Electrons and Positrons Channeling in Crystals with MBN Explorer

    Full text link
    A newly developed code, implemented as a part of the \MBNExplorer package \cite{MBN_ExplorerPaper,MBN_ExplorerSite} to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by \E=6.7 GeV and \E=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe-Heitler theory for the amorphous environment.Comment: 41 pages, 11 figures. Initially submitted on Dec 29, 2012 to Phys. Rev.

    Particles held by springs in a linear shear flow exhibit oscillatory motion

    Get PDF
    The dynamics of small spheres, which are held by linear springs in a low Reynolds number shear flow at neighboring locations is investigated. The flow elongates the beads and the interplay of the shear gradient with the nonlinear behavior of the hydrodynamic interaction among the spheres causes in a large range of parameters a bifurcation to a surprising oscillatory bead motion. The parameter ranges, wherein this bifurcation is either super- or subcritical, are determined.Comment: 4 pages, 5 figure

    Research on Geometrical Errors of Geokhod Prototype Shell Based on Coordinate Control Data

    Get PDF
    The article contains results of a research on geometric accuracy of a geokhod prototype shell. The article outlines the general structural features of geokhod bodies, and the main principles of manufacturing in test production. An overview of approaches to modeling of shell error occurrence is given. The researches were conducted on the basis of data obtained by coordinate control over the stabilizing section shell. The data were studied by statistical methods and analyzed in terms of their compliance with previously proposed mathematical models of formation of geokhod shell inaccuracies. It is shown that available mathematical models can not completely explain the origin of all the errors. The authors attribute unexplained geokhod shell errors as deformations caused by welding

    Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates

    Full text link
    In many molecular systems one encounters the situation where electronic excitations couple to a quasi-continuum of phonon modes. That continuum may be highly structured e.g. due to some weakly damped high frequency modes. To handle such a situation, an approach combining the non-Markovian quantum state diffusion (NMQSD) description of open quantum systems with an efficient but abstract approximation was recently applied to calculate energy transfer and absorption spectra of molecular aggregates [Roden, Eisfeld, Wolff, Strunz, PRL 103 (2009) 058301]. To explore the validity of the used approximation for such complicated systems, in the present work we compare the calculated (approximative) absorption spectra with exact results. These are obtained from the method of pseudomodes, which we show to be capable of determining the exact spectra for small aggregates and a few pseudomodes. It turns out that in the cases considered, the results of the two approaches mostly agree quite well. The advantages and disadvantages of the two approaches are discussed

    PIH11 SOCIO-ECONOMIC ASPECTS OF THE PRENATAL DIAGNOSIS OF CYTOMEGALOVIRUS (CMV) INFECTION IN GERMANY: A BURDEN OF DISEASE STUDY

    Get PDF

    Probing the Earth's interior with a large-volume liquid scintillator detector

    Full text link
    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from β\beta-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction νˉe+pn+e+\bar\nu_e+p\to n+e^+ provides directional information. We investigate the requirements on such detectors to distinguish between certain geophysical models on the basis of the angular dependence of the geoneutrino flux. Our analysis is based on a Monte-Carlo simulation with different levels of light yield, considering both unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector such as the proposed LENA (Low Energy Neutrino Astronomy) will detect deviations from isotropy of the geoneutrino flux significantly. However, with an unloaded scintillator the time needed for a useful discrimination between different geophysical models is too large if one uses the directional information alone. A Gd-loaded scintillator improves the situation considerably, although a 50 kt detector would still need several decades to distinguish between a geophysical reference model and one with a large neutrino source in the Earth's core. However, a high-statistics measurement of the total geoneutrino flux and its spectrum still provides an extremely useful glance at the Earth's interior.Comment: 21 pages, 9 figures. Minor changes, version accepted for publication in Astroparticle Physic
    corecore