114 research outputs found

    Renormalization Ambiguities and Conformal Anomaly in Metric-Scalar Backgrounds

    Get PDF
    We analyze the problem of the existing ambiguities in the conformal anomaly in theories with external scalar field in curved backgrounds. In particular, we consider the anomaly of self-interacting massive scalar field theory and of Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of a local non-minimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise.Comment: RevTeX, 10 pages, no figures. Small comment and two references added. Accepted for publication in Physical Review

    The chicken or the egg; or Who ordered the chiral phase transition?

    Get PDF
    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and anti-baryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives Tc=180T_c=180 Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.Comment: 22 pages, 7 figures, comments about chiral symmetry at finite nuclear density are adde

    A note about the t`Hooft`s ansatz for SU(N) real time guage theories

    Full text link
    The t`Hooft's ansatz reduces the classical Yang--Mills theory to the λϕ4\lambda\phi^4 one. It is shown that in the frame of this ansatz the real-time classical solutions for the arbitrary SU(N) gauge group is obtained by embedding SU(2)×SU(2)SU(2)\times SU(2) into SU(N). It is argued that this group structure is the only possibility in the frame of the considered ansatz. New explicit solutions for SU(3) and SU(5) gauge groups are shown

    Unified Angular Momentum of Dyons

    Full text link
    Unified quaternionic angular momentum for the fields of dyons and gravito-dyons has been developed and the commutation relations for dynamical variables are obtained in compact and consistent manner. Demonstrating the quaternion forms of unified fields of dyons (electromagnetic fields) and gravito-dyons (gravito-Heavisidian fields of linear gravity), corresponding quantum equations are reformulated in compact, simpler and manifestly covariant way

    Gell-Mann - Low Function in QED for the arbitrary coupling constant

    Full text link
    The Gell-Mann -- Low function \beta(g) in QED (g is the fine structure constant) is reconstructed. At large g, it behaves as \beta_\infty g^\alpha with \alpha\approx 1, \beta_\infty\approx 1.Comment: 5 pages, PD

    Cosmological Acceleration from Virtual Gravitons

    Full text link
    Intrinsic properties of the space itself and quantum fluctuations of its geometry are sufficient to provide a mechanism for the acceleration of cosmological expansion (dark energy effect). Applying Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy approach to self-consistent equations of one-loop quantum gravity, we found exact solutions that yield acceleration. The permanent creation and annihilation of virtual gravitons is not in exact balance because of the expansion of the Universe. The excess energy comes from the spontaneous process of graviton creation and is trapped by the background. It provides the macroscopic quantum effect of cosmic acceleration.Comment: 6 pages, REVTeX

    Hamiltonian structure of 2+1 dimensional gravity

    Get PDF
    A summary is given of some results and perspectives of the hamiltonian ADM approach to 2+1 dimensional gravity. After recalling the classical results for closed universes in absence of matter we go over the the case in which matter is present in the form of point spinless particles. Here the maximally slicing gauge proves most effective by relating 2+1 dimensional gravity to the Riemann- Hilbert problem. It is possible to solve the gravitational field in terms of the particle degrees of freedom thus reaching a reduced dynamics which involves only the particle positions and momenta. Such a dynamics is proven to be hamiltonian and the hamiltonian is given by the boundary term in the gravitational action. As an illustration the two body hamiltonian is used to provide the canonical quantization of the two particle system.Comment: 13 pages,2 figures,latex, Plenary talk at SIGRAV2000 Conferenc

    Gravitating monopoles in SU(3) gauge theory

    Get PDF
    We consider the Einstein-Yang-Mills-Higgs equations for an SU(3) gauge group in a spherically symmetric ansatz. Several properties of the gravitating monopole solutions are obtained an compared with their SU(2) counterpart.Comment: 7 pages, Latex, 3 figure

    Higher Derivative Quantum Gravity with Gauss-Bonnet Term

    Full text link
    Higher derivative theory is one of the important models of quantum gravity, renormalizable and asymptotically free within the standard perturbative approach. We consider the 4−ϵ4-\epsilon renormalization group for this theory, an approach which proved fruitful in 2−ϵ2-\epsilon models. A consistent formulation in dimension n=4−ϵn=4-\epsilon requires taking quantum effects of the topological term into account, hence we perform calculation which is more general than the ones done before. In the special n=4n=4 case we confirm a known result by Fradkin-Tseytlin and Avramidi-Barvinsky, while contributions from topological term do cancel. In the more general case of 4−ϵ4-\epsilon renormalization group equations there is an extensive ambiguity related to gauge-fixing dependence. As a result, physical interpretation of these equations is not universal unlike we treat ϵ\epsilon as a small parameter. In the sector of essential couplings one can find a number of new fixed points, some of them have no analogs in the n=4n=4 case.Comment: LaTeX file, 30 pages, 5 figures. Several misprints in the intermediate expressions correcte

    Twisted SUSY: twisted symmetry versus renormalizability

    Full text link
    We discuss a deformation of superspace based on a hermitian twist. The twist implies a ⋆\star-product that is noncommutative, hermitian and finite when expanded in power series of the deformation parameter. The Leibniz rule for the twisted SUSY transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.Comment: 20 pages, no figure
    • …
    corecore