18,482 research outputs found
Non-invasive acquisition of fetal ECG from the maternal xyphoid process: a feasibility study in pregnant sheep and a call for open data sets
Objective: The utility of fetal heart rate (FHR) monitoring can only be
achieved with an acquisition sampling rate that preserves the underlying
physiological information on the millisecond time scale (1000 Hz rather than 4
Hz). For such acquisition, fetal ECG (fECG) is required, rather than the
ultrasound to derive FHR. We tested one recently developed algorithm, SAVER,
and two widely applied algorithms to extract fECG from a single channel
maternal ECG signal recorded over the xyphoid process rather than the routine
abdominal signal. Approach: At 126dG, ECG was attached to near-term ewe and
fetal shoulders, manubrium and xyphoid processes (n=12). FECG served as the
ground-truth to which the fetal ECG signal extracted from the
simultaneously-acquired maternal ECG was compared. All fetuses were in good
health during surgery (pH 7.29+/-0.03, pO2 33.2+/-8.4, pCO2 56.0+/-7.8, O2Sat
78.3+/-7.6, lactate 2.8+/-0.6, BE -0.3+/-2.4). Main result: In all animals,
single lead fECG extraction algorithm could not extract fECG from the maternal
ECG signal over the xyphoid process with the F1 less than 50%. Significance:
The applied fECG extraction algorithms might be unsuitable for the maternal ECG
signal over the xyphoid process, or the latter does not contain strong enough
fECG signal, although the lead is near the mother's abdomen. Fetal sheep model
is widely used to mimic various fetal conditions, yet ECG recordings in a
public data set form are not available to test the predictive ability of fECG
and FHR. We are making this data set openly available to other researchers to
foster non-invasive fECG acquisition in this animal model
Positive, warm T cell crossmatch in cardiac transplantation: With transient vasculitis and without hyperacute rejection
Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: The role of primary infection
Fourteen patients who developed B cell lymphomas or lymphoproliferative lesions after kidney, liver, heart, or heart-lung transplantation in Pittsburgh during 1981-1983 had active infection with Epstein-Barr virus (EBV)of the primary (six patients), reactivated (seven patients), or chronic (one patient) type. In transplant patients without tumors, the incidence of EBV infection was 30% (39 of 128). Only three of these patients had primary infections. Thus the frequency of active infection was significantly higher in patients with tumors, and patients with primary infections were at greater risk of developing tumors. Five of 13 tumors tested contained EBV nuclear antigen (EBNA) and nine of 11 contained EBV genomes detected by DNA-DNA hybridization with BamHI K, BamHI W, or EcoRI B cloned probes. All EBNA-positive tumors, except one, were also positive by hybridization. Only one tumor was negative for both EBNA and EBV DNA. These data suggest that EBV plays an etiologic role in the development of these lesions. © 1985 by The University of Chicago
Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions
The dynamical behavior of Bose-Einstein condensation (BEC) in a gas with
attractive interactions is striking. Quantum theory predicts that BEC of a
spatially homogeneous gas with attractive interactions is precluded by a
conventional phase transition into either a liquid or solid. When confined to a
trap, however, such a condensate can form provided that its occupation number
does not exceed a limiting value. The stability limit is determined by a
balance between self-attraction and a repulsion arising from position-momentum
uncertainty under conditions of spatial confinement. Near the stability limit,
self-attraction can overwhelm the repulsion, causing the condensate to
collapse. Growth of the condensate, therefore, is punctuated by intermittent
collapses, which are triggered either by macroscopic quantum tunneling or
thermal fluctuation. Previous observation of growth and collapse has been
hampered by the stochastic nature of these mechanisms. Here we reduce the
stochasticity by controlling the initial number of condensate atoms using a
two-photon transition to a diatomic molecular state. This enables us to obtain
the first direct observation of the growth of a condensate with attractive
interactions and its subsequent collapse.Comment: 10 PDF pages, 5 figures (2 color), 19 references, to appear in Nature
Dec. 7 200
Distribution and Excretion of TEGDMA in Guinea Pigs and Mice
The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis
Melt conditioning by advanced shear technology (MCAST) for refining solidification microstructures
MCAST (melt conditioning by advanced shear technology) is a novel processing technology developed recently by BCAST at Brunel University for conditioning liquid metal prior to solidification processing. The MCAST process uses a twin screw mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature, uniform chemical composition and well-dispersed and completely wetted oxide particles with a fine size and a narrow size distribution. The microstructural refinement is achieved through an enhanced heterogeneous nucleation rate and an increased nuclei survival rate during the subsequent solidification processing. In this paper we present the MCAST process and its applications for microstructural refinement in both shape casting and continuous casting of light alloys
Regularity of Edge Ideals and Their Powers
We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals
of graphs and their powers. Our focus is on bounds and exact values of and the asymptotic linear function , for in terms of combinatorial data of the given graph Comment: 31 pages, 15 figure
Generalized Chern-Simons Modified Gravity in First-Order Formalism
We propose a generalization of Chern-Simons (CS) modified gravity in
first-order formalism. CS modified gravity action has a term that comes from
the chiral anomaly which is Pontryagin invariant. First-order CS modified
gravity is a torsional theory and in a space-time with torsion the chiral
anomaly includes a torsional topological term called Nieh-Yan invariant. We
generalize the CS modified gravity by adding the Nieh-Yan term to the action
and find the effective theory. We compare the generalized theory with the
first-order CS modified gravity and comment on the similarities and
differences.Comment: 8 pages, an author added, new paragraphs, comments and references
added, published in Gen. Relativ. Gravi
Search for electromagnetic properties of the neutrinos at the LHC
Exclusive production of neutrinos via photon-photon fusion provides an
excellent opportunity to probe electromagnetic properties of the neutrinos at
the LHC. We explore the potential of processes pp-> p gamma gamma p -> p nu
anti-nu p and pp -> p gamma gamma p -> p nu anti-nu Z p to probe
neutrino-photon and neutrino-two photon couplings. We show that these reactions
provide more than seven orders of magnitude improvement in neutrino-two photon
couplings compared to LEP limits.Comment: 11 pages, 4 tables, New backgrounds have been adde
Sisyphus cooling and amplification by a superconducting qubit
Laser cooling of the atomic motion paved the way for remarkable achievements
in the fields of quantum optics and atomic physics, including Bose-Einstein
condensation and the trapping of atoms in optical lattices. More recently
superconducting qubits were shown to act as artificial two-level atoms,
displaying Rabi oscillations, Ramsey fringes, and further quantum effects.
Coupling such qubits to resonators brought the superconducting circuits into
the realm of quantum electrodynamics (circuit QED). It opened the perspective
to use superconducting qubits as micro-coolers or to create a population
inversion in the qubit to induce lasing behavior of the resonator. Furthering
these analogies between quantum optical and superconducting systems we
demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a
near-resonantly driven superconducting qubit. In the quantum optics setup the
mechanical degrees of freedom of an atom are cooled by laser driving the atom's
electronic degrees of freedom. Here the roles of the two degrees of freedom are
played by the LC circuit and the qubit's levels, respectively. We also
demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus
amplification. Parallel to the experimental demonstration we analyze the system
theoretically and find quantitative agreement, which supports the
interpretation and allows us to estimate system parameters.Comment: 7 pages, 4 figure
- …
