7,587 research outputs found

    Measurement of the c-axis optical reflectance of AFe2_2As2_2 (A=Ba, Sr) single crystals: Evidence of different mechanisms for the formation of two energy gaps

    Full text link
    We present the c-axis optical reflectance measurement on single crystals of BaFe2_2As2_2 and SrFe2_2As2_2, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}∥\parallelc-axis. The very pronounced energy gap structure seen at a higher energy scale for \textbf{E}∥\parallelab-plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps.Comment: 4 page

    Measurements of Heavy Flavor and Di-electron Production at STAR

    Full text link
    Heavy quarks are produced early in the relativistic heavy ion collisions, and provide an excellent probe into the hot and dense nuclear matter created at RHIC. In these proceedings, we will discuss recent STAR measurements of heavy flavor production, to investigate the heavy quark interaction with the medium. Electromagnetic probes, such as electrons, provide information on the various stages of the medium evolution without modification by final stage interactions. Di-electron production measurements by STAR will also be discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201

    Anisotropic superconducting properties of aligned Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} microcrystalline powder

    Full text link
    The Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} compound is a quasi-2D layered superconductor with a superconducting transition temperature Tc_c = 52 K. Due to the Fe spin-orbital related anisotropic exchange coupling (antiferromagnetic or ferromagnetic fluctuation), the tetragonal microcrystalline powder can be aligned at room temperature using the field-rotation method where the tetragonal ab\it{ab}-plane is parallel to the aligned magnetic field Ba_{a} and c\it{c}-axis along the rotation axis. Anisotropic superconducting properties with anisotropic diamagnetic ratio χc/χab∼\chi_{c}/\chi_{ab}\sim 2.4 + 0.6 was observed from low field susceptibility χ\chi(T) and magnetization M(Ba_{a}). The anisotropic low-field phase diagram with the variation of lower critical field gives a zero-temperature penetration depth λc\lambda_{c}(0) = 280 nm and λab\lambda_{ab}(0) = 120 nm. The magnetic fluctuation used for powder alignment at 300 K may be related with the pairing mechanism of superconductivity at lower temperature.Comment: 4 pages, 6 figure

    Simple Front End Electronics for Multigap Resistive Plate Chambers

    Full text link
    A simple circuit for the presentation of the signals from Multi-gap Resistive Plate Chambers (MRPCs) to standard existing digitization electronics is described. The circuit is based on "off-the-shelf" discrete components. An optimization of the values of specific components is required to match the aspects of the MRPCs for the given application. This simple circuit is an attractive option for the initial signal processing for MRPC prototyping and bench- or beam-testing efforts, as well as for final implementations of small-area Time-of-Flight systems with existing data acquisition systems.Comment: submitted to Nucl. Inst. and Methods, Section

    Obvious enhancement of the total reaction cross sections for 27,28^{27,28}P with 28^{28}Si target and the possible relavent mechanisms

    Full text link
    The reaction cross sections of 27,28^{27,28}P and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at % Z=15. The experimental results for the isotones with Z≤14Z\leq 14 as well as % ^{28}P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross section for 28^{28}P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27^{27}P. Our theoretical analysis shows that an enlarged core together with proton halo are probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27^{27}P+28^{28}Si.Comment: 16 pages, 5 figures, to be published in Phys.Rev.

    Three dimensionality of band structure and a large residual quasiparticle population in Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_2 as revealed by the c-axis polarized optical measurement

    Full text link
    We report on a c-axis polarized optical measurement on a Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_2 single crystal. We find that the c-axis optical response is significantly different from that of high-Tc_c cuprates. The experiments reveal an anisotropic three-dimensional optical response with the absence of the Josephson plasma edge in R(ω\omega) in the superconducting state. Furthermore, different from the ab-plane optical response, a large residual quasiparticle population down to T∼15TcT\sim\frac{1}{5}T_c was observed in the c-axis polarized reflectance measurement. We elaborate that there exist nodes for the superconducting gap in regions of the 3D Fermi surface that contribute dominantly to the c-axis optical conductivity.Comment: 4 figure

    Effect of electron-electron scattering on spin dephasing in a high-mobility low-density twodimensional electron gas

    Full text link
    Utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high mobility, low density two dimensional electron gas in a GaAs/Al0:35Ga0:65As heterostructure in dependence on temperature from 1.5 K to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to D'yakonov-Perel'(DP) mechanism becomes weakest. These results agree with the recent theoretical predictions [Zhou et al., PRB 75, 045305 (2007)], verifying the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.Comment: 4 pages, 2 figure

    152 fs nanotube-mode-locked thulium-doped all-fiber laser.

    Get PDF
    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps(2), and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials.We acknowledge funding from the Science and Technology Projects of Shenzhen City (JCYJ20150324140036862, JCYJ20140418095735546), the Natural Science Foundation of Guangdong Province (2015A030310464, 2016A030310049), the Scientific Research Foundation of Shenzhen City (827-000118), the Teknologiateollisuus TT-100, the European Union’s Seventh Framework Programme (REA grant agreement No. 631610), the Academy of Finland (No. 284548), Tekes (OPEC) and Aalto University (Finland). TH acknowledges funding from the Royal Academy of Engineering through a research fellowship (Graphlex).This is the final version of the article. It first appeared from Nature Publishing Group at http://dx.doi.org/10.1038/srep28885
    • …
    corecore