57 research outputs found

    Spontaneous decay of excited atomic states near a carbon nanotube

    Full text link
    Spontaneous decay process of an excited atom placed inside or outside (near the surface) a carbon nanotube is analyzed. Calculations have been performed for various achiral nanotubes. The effect of the nanotube surface has been demonstrated to dramatically increase the atomic spontaneous decay rate -- by 6 to 7 orders of magnitude compared with that of the same atom in vacuum. Such an increase is associated with the nonradiative decay via surface excitations in the nanotube.Comment: 8 pages, 3 figure

    Quantum tight-binding chains with dissipative coupling

    Get PDF
    We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks

    Microscopic theory of quantum dot interactions with quantum light: local field effect

    Full text link
    A theory of both linear and nonlinear electromagnetic response of a single QD exposed to quantum light, accounting the depolarization induced local--field has been developed. Based on the microscopic Hamiltonian accounting for the electron--hole exchange interaction, an effective two--body Hamiltonian has been derived and expressed in terms of the incident electric field, with a separate term describing the QD depolarization. The quantum equations of motion have been formulated and solved with the Hamiltonian for various types of the QD excitation, such as Fock qubit, coherent fields, vacuum state of electromagnetic field and light with arbitrary photonic state distribution. For a QD exposed to coherent light, we predict the appearance of two oscillatory regimes in the Rabi effect separated by the bifurcation. In the first regime, the standard collapse--revivals phenomenon do not reveal itself and the QD population inversion is found to be negative, while in the second one, the collapse--revivals picture is found to be strongly distorted as compared with that predicted by the standard Jaynes-Cummings model. %The model developed can easily be extended to %%electromagnetic excitation. For the case of QD interaction with arbitrary quantum light state in the linear regime, it has been shown that the local field induce a fine structure of the absorbtion spectrum. Instead of a single line with frequency corresponding to which the exciton transition frequency, a duplet is appeared with one component shifted by the amount of the local field coupling parameter. It has been demonstrated the strong light--mater coupling regime arises in the weak-field limit. A physical interpretation of the predicted effects has been proposed.Comment: 14 pages, 7 figure

    Spontaneous decay of an emitter's excited state near a finite-length metallic carbon nanotube

    Full text link
    The spontaneous decay of an excited state of an emitter placed in the vicinity of a metallic single-wall carbon nanotube (SWNT) was examined theoretically. The emitter-SWNT coupling strongly depends on the position of the emitter relative to the SWNT, the length of the SWNT, the dipole transition frequency and the orientation of the emitter. In the high-frequency regime, dips in the spectrum of the spontaneous decay rate exist at the resonance frequencies in the spectrum of the SWNT conductivity. In the intermediate-frequency regime, the SWNT conductivity is very low, and the spontaneous decay rate is practically unaffected by the SWNT. In the low-frequency regime, the spectrum of the spontaneous decay rate contains resonances at the antennas resonance frequencies for surface-wave propagation in the SWNT. Enhancement of both the total and radiative spontaneous decay rates by several orders in magnitude is predicted at these resonance frequencies. The strong emitter-field coupling is achieved, in spite of the low Q factor of the antenna resonances, due to the very high magnitude of the electromagnetic field in the near-field zone. The vacuum Rabi oscillations of the population of the excited emitter state are exhibited when the emitter is coupled to an antenna resonance of the SWNT.Comment: 8 pages, 6 figure

    Spontaneous decay dynamics in atomically doped carbon nanotubes

    Full text link
    We report a strictly non-exponential spontaneous decay dynamics of an excited two-level atom placed inside or at different distances outside a carbon nanotube (CN). This is the result of strong non-Markovian memory effects arising from the rapid variation of the photonic density of states with frequency near the CN. The system exhibits vacuum-field Rabi oscillations, a principal signature of strong atom-vacuum-field coupling, when the atom is close enough to the nanotube surface and the atomic transition frequency is in the vicinity of the resonance of the photonic density of states. Caused by decreasing the atom-field coupling strength, the non-exponential decay dynamics gives place to the exponential one if the atom moves away from the CN surface. Thus, atom-field coupling and the character of the spontaneous decay dynamics, respectively, may be controlled by changing the distance between the atom and CN surface by means of a proper preparation of atomically doped CNs. This opens routes for new challenging nanophotonics applications of atomically doped CN systems as various sources of coherent light emitted by dopant atoms.Comment: 10 pages, 4 figure

    van der Waals coupling in atomically doped carbon nanotubes

    Full text link
    We have investigated atom-nanotube van der Waals (vdW) coupling in atomically doped carbon nanotubes (CNs). Our approach is based on the perturbation theory for degenerated atomic levels, thus accounting for both weak and strong atom-vacuum-field coupling. The vdW energy is described by an integral equation represented in terms of the local photonic density of states (DOS). By solving it numerically, we demonstrate the inapplicability of standard weak-coupling-based vdW interaction models in a close vicinity of the CN surface where the local photonic DOS effectively increases, giving rise to an atom-field coupling enhancement. An inside encapsulation of atoms into the CN has been shown to be energetically more favorable than their outside adsorption by the CN surface. If the atom is fixed outside the CN, the modulus of the vdW energy increases with the CN radius provided that the weak atom-field coupling regime is realized (i.e., far enough from the CN). For inside atomic position, the modulus of the vdW energy decreases with the CN radius, representing a general effect of the effective interaction area reduction with lowering the CN curvature.Comment: 15 pages, 5 figure

    Harmonic generation in ring-shaped molecules

    Get PDF
    We study numerically the interaction between an intense circularly polarized laser field and an electron moving in a potential which has a discrete cylindrical symmetry with respect to the laser pulse propagation direction. This setup serves as a simple model, e.g., for benzene and other aromatic compounds. From general symmetry considerations, within a Floquet approach, selection rules for the harmonic generation [O. Alon Phys. Rev. Lett. 80 3743 (1998)] have been derived recently. Instead, the results we present in this paper have been obtained solving the time-dependent Schroedinger equation ab initio for realistic pulse shapes. We find a rich structure which is not always dominated by the laser harmonics.Comment: 15 pages including 7 figure
    • …
    corecore