1,695 research outputs found

    When does socioeconomic status (SES) moderate the heritability of IQ?:No evidence for g x SES interaction for IQ in a representative sample of 1,176 Australian adolescent twin pairs

    Get PDF
    Bioecological theory predicts that cognitive ability is more heritable among those raised in higher socioeconomic status (SES) families. However, the mechanism of this effect is unclear, and the effect may not be universal. We tested for gene × SES interaction effects on Full-scale IQ in 2307 adolescent Australian twins (mean age 16.2 years). Mean IQ scores were modestly higher among those from higher SES backgrounds, but the magnitude of genetic influences on IQ was uniformly high across the range of SES. Research identifying the conditions under which expressed genetic potential can become decoupled from parental SES, as seen here, is needed. We speculate that school provision may be key

    Evaluating eHealth: Undertaking Robust International Cross-Cultural eHealth Research

    Get PDF
    David Bates and Adam Wright discuss the opportunities and challenges of undertaking international collaborations in eHealth evaluation research, and make recommendations for moving forward

    SNP Sets and Reading Ability: Testing Confirmation of a 10-SNP Set in a Population Sample

    Get PDF
    A set of 10 SNPs associated with reading ability in 7-year-olds was reported based on initial pooled analyses of 100K SNP chip data, with follow-up testing stages using pooling and individual testing. Here we examine this association in an adolescent population sample of Australian twins and siblings (N = 1177) aged 12 to 25 years. One (rs1842129) of the 10 SNPs approached significance (P = .05) but no support was found for the remaining 9 SNPs or the SNP set itself. Results indicate that these SNPs are not associated with reading ability in an Australian population. The results are interpreted as supporting use of much larger SNP sets in common disorders where effects are small

    Incorporating Medication Indications into the Prescribing Process

    Get PDF
    Purpose The incorporation of medication indications into the prescribing process to improve patient safety is discussed. Summary Currently, most prescriptions lack a key piece of information needed for safe medication use: the patient-specific drug indication. Integrating indications could pave the way for safer prescribing in multiple ways, including avoiding look-alike/sound-alike errors, facilitating selection of drugs of choice, aiding in communication among the healthcare team, bolstering patient understanding and adherence, and organizing medication lists to facilitate medication reconciliation. Although strongly supported by pharmacists, multiple prior attempts to encourage prescribers to include the indication on prescriptions have not been successful. We convened 6 expert panels to consult high-level stakeholders on system design considerations and requirements necessary for building and implementing an indications-based computerized prescriber order-entry (CPOE) system. We summarize our findings from the 6 expert stakeholder panels, including rationale, literature findings, potential benefits, and challenges of incorporating indications into the prescribing process. Based on this stakeholder input, design requirements for a new CPOE interface and workflow have been identified. Conclusion The emergence of universal electronic prescribing and content knowledge vendors has laid the groundwork for incorporating indications into the CPOE prescribing process. As medication prescribing moves in the direction of inclusion of the indication, it is imperative to design CPOE systems to efficiently and effectively incorporate indications into prescriber workflows and optimize ways this can best be accomplished

    Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 330-335, doi:10.1073/pnas.1215340110.Hydrothermal vents are a well-known source of energy that powers chemosynthesis in the deep sea. Recent work suggests that microbial chemosynthesis is also surprisingly pervasive throughout the dark oceans, serving as a significant CO2 sink even at sites far-removed from vents. Ammonia and sulfur have been identified as potential electron donors for this chemosynthesis, but they do not fully account for measured rates of dark primary production in the pelagic water column. Here we use metagenomic and metatranscriptomic analyses to show that deep-sea populations of the SUP05 group of uncultured sulfur oxidizing Gammaproteobacteria, which are abundant in widespread and diverse marine environments, contain and highly express genes encoding group 1 Ni-Fe hydrogenase enzymes for H2 oxidation. Reconstruction of near-complete genomes of two co-occurring SUP05 populations in hydrothermal plumes and deep waters of the Gulf of California enabled detailed population-specific metatranscriptomic analyses, revealing dynamic patterns of gene content and transcript abundance. SUP05 transcripts for genes involved in H2 and sulfur oxidation are most abundant in hydrothermal plumes where these electron donors are enriched. In contrast, a second hydrogenase has more abundant transcripts in background deep sea samples. Coupled with results from a bioenergetic model that suggest that H2 oxidation can contribute significantly to the SUP05 energy budget, these findings reveal the potential importance of H2 as a key energy source in the deep ocean. This study also highlights the genomic plasticity of SUP05, which enables this widely distributed group to optimize its energy metabolism (electron donor and acceptor) to local geochemical conditions.This project is funded in part by the Gordon and Betty Moore Foundation and the National Science Foundation (OCE 1029242)

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF
    • …
    corecore