23 research outputs found

    Functional Mapping of the DNA Binding Domain of Bovine Papillomavirus E1 Protein

    Get PDF
    Bovine papillomavirus type 1 (BPV-1) requires viral proteins E1 and E2 for efficient DNA replication in host cells. E1 functions at the BPV origin as an ATP-dependent helicase during replication initiation. Previously, we used alanine mutagenesis to identify two hydrophilic regions of the E1 DNA binding domain (E1DBD), HR1 (E1(179–191)) and HR3 (E1(241–252)), which are critical for sequence-specific recognition of the papillomavirus origin. Based on sequence and structure, these regions are similar in spacing and location to DNA binding regions A and B2 of T antigen, the DNA replication initiator of simian virus 40 (SV40). HR1 and A are both part of extended loops which are supported by residues from the HR3 and B2 α-helices. Both elements contain basic residues which may contact DNA, although lack of cocrystal structures for both E1 and T antigen make this uncertain. To better understand how E1 interacts with origin DNA, we used random mutagenesis and a yeast one-hybrid screen to select mutations of the E1DBD which disrupt sequence-specific DNA interactions. From the screen we selected seven single point mutants and one double point mutant (F175S, N184Y/K288R, D185G, V193M, F237L, K241E, R243K, and V246D) for in vitro analysis. All mutants tested in electrophoretic mobility shift assays displayed reduced sequence-specific DNA binding compared to the wild-type E1DBD. Mutants D185G, F237L, and R243K were rescued in vitro for DNA binding by the replication enhancer protein E2. We also tested the eight mutations in full-length E1 for the ability to support DNA replication in Chinese hamster ovary cells. Only mutants D185G, F237L, and R243K supported significant DNA replication in vivo which highlights the importance of E1DBD-E2 interactions for papillomavirus DNA replication. Based on the specific point mutations examined, we also assigned putative roles to individual residues in DNA binding. Finally, we discuss sequence and spacing similarities between E1 HR1 and HR3 and short regions of two other DNA tumor virus origin-binding proteins, SV40 T antigen and Epstein-Barr virus nuclear antigen 1 (EBNA1). We propose that all three proteins use a similar DNA recognition mechanism consisting of a loop structure which makes base-specific contacts (HR1) and a helix which primarily contacts the DNA backbone (HR3)

    Identification of a Short, Hydrophilic Amino Acid Sequence Critical for Origin Recognition by the Bovine Papillomavirus E1 Protein

    Get PDF
    The E1 protein of bovine papillomavirus (BPV) is a site-specific DNA binding protein that recognizes an 18-bp inverted repeat element in the viral origin of replication. Sequence-specific DNA binding function maps to the region from approximately amino acids 140 to 300, and isolated polypeptides containing this region have been shown to retain origin binding in vitro. To investigate the sequence and structural characteristics which contribute to sequence-specific binding, the primary sequence of this region was examined for conserved features. The BPV E1 DNA binding domain (E1DBD) contains three major hydrophilic domains (HR1, amino acids 179–191; HR2, amino acids 218 to 230; and HR3, amino acids 241 to 252), of which only HR1 and HR3 are conserved among papillomavirus E1 proteins. E1DBD proteins with lysine-to-alanine mutations in HR1 and HR3 were severely impaired for DNA binding function in vitro, while a lysine-to-alanine mutation in HR2 had a minimal effect on DNA binding. Mutation of adjacent threonine residues in HR1 (T187 and T188) revealed that these two amino acids made drastically different contributions to DNA binding, with the T187 mutant being severely defective for origin binding whereas the T188 mutant was only mildly affected. Helical wheel projections of HR1 predict that T187 is on the same helical face as the critical lysine residues whereas T188 is on the opposing face, which is consistent with their respective contributions to DNA binding activity. To examine E1 binding in vivo, a yeast one-hybrid system was developed. Both full-length E1 and the E1DBD polypeptide were capable of specifically interacting with the E1 binding site in the context of the yeast genome, and HR1 was also critical for this in vivo interaction. Overall, our results indicate that HR1 is essential for origin binding by E1, and the features and properties of HR1 suggest that it may be part of a recognition sequence that mediates specific E1-nucleotide contacts

    Besprechungen

    No full text

    Genomic analysis of Bornean geckos (Gekkonidae : Cyrtodactylus) reveals need for updated taxonomy.

    No full text
    Using molecular genetic data, recognised diversity within the gecko genus Cyrtodactylus has more than doubled, with many lineagesthat were once thought to be wide-ranging being delimited into multiple independent species. On the Southeast Asian island of Borneo, there has been a recent renewed focus on reptile taxonomy, as genetic data have demonstrated a high amount of unrecognised biodiversity. We herein advance this taxonomic trend by delimiting three distinct species within the Cyrtodactylus consobrinus species complex: C. consobrinus, C. kapitensis sp. n., and C. hutan sp. n. To do so, we use a combination of ddRADseq and single-locus data, and morphological data. Using genomic data, we test species and population boundaries within the consobrinus species complex and show minimal population structure but high species-level diversity. Despite not finding uniquely diagnostic morphological characters to delimit the new species, we suggest a combination of characters that can be used to identify each lineage. Lastly, we use our data to comment on the status of C. malayanus, with indications that this lineage is also better considered a species complex. These data highlight the prevalence of unrecognised lineages on Borneo, many of which face threats due to increasing deforestation and other anthropogenic pressures
    corecore