457 research outputs found

    Fishery Resource of the Upper Mississippi River and Relationship to Stream Discharge

    Get PDF
    ABSTRACT-Fish population data collected through the Northern States Power Company monitoring program near its plants at Monticello and Becker, Minnesota were analyzed to describe species diversity, changes in recreational fishing, fishing success, and the influence of stream discharge on smallmouth bass year-class success and abundance. The work is part of a more extensive effort to develop a model applicable in managing the upper Mississippi River to meet the growing needs of recreation, agriculture, communities, and industry. Analysis of these data shows 48 species to be present and that smallmouth bass, Micropterus dolomieu~ is the most important game species in the growing recreational fishery. Comparison of smallmouth bass year-class strength estimates with stream discharge for the period 1973-1987, indicates strong year-classes develop during years characterized by low spring and summer discharge

    Analysis of Carbohydrate Storage Granules in the Diazotrophic Cyanobacterium Cyanothece sp. PCC 7822.

    Get PDF
    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H2 production when grown under 12 h light–12 h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and CyanothecePCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria

    A Nuclear Reactor Simulator for Teaching Purposes

    Full text link
    For presentation at the Nuclear Engineering and Science Congress sponsored by Engineers Joint Council, December 12-16, 1955, at Cleveland Ohio.http://deepblue.lib.umich.edu/bitstream/2027.42/86101/1/MMPP Orr-Kerr-Gomberg Dec 1955.PDF2

    A Nuclear Reactor Simulator for Teachng Purposes

    Full text link
    This is the full text of a paper presented at the Nuclear Engineering and Science Congress, Cleveland, Ohio, December 12-15, 1955.http://deepblue.lib.umich.edu/bitstream/2027.42/86097/1/MMPP Orr-Kerr-Gomberg, April 1956.PDF2

    A Nuclear Reactor Simulator for Teaching Purposes

    Full text link
    For presentation at the Nuclear Engineering and Science Congress sponsored by Engineers Joint Council, December 12-16, 1955, at Cleveland Ohio.http://deepblue.lib.umich.edu/bitstream/2027.42/86101/1/MMPP Orr-Kerr-Gomberg Dec 1955.PDF2

    Understanding the effect of sheared flow on microinstabilities

    Full text link
    The competition between the drive and stabilization of plasma microinstabilities by sheared flow is investigated, focusing on the ion temperature gradient mode. Using a twisting mode representation in sheared slab geometry, the characteristic equations have been formulated for a dissipative fluid model, developed rigorously from the gyrokinetic equation. They clearly show that perpendicular flow shear convects perturbations along the field at a speed we denote by McsMc_s (where csc_s is the sound speed), whilst parallel flow shear enters as an instability driving term analogous to the usual temperature and density gradient effects. For sufficiently strong perpendicular flow shear, M>1M >1, the propagation of the system characteristics is unidirectional and no unstable eigenmodes may form. Perturbations are swept along the field, to be ultimately dissipated as they are sheared ever more strongly. Numerical studies of the equations also reveal the existence of stable regions when M<1M < 1, where the driving terms conflict. However, in both cases transitory perturbations exist, which could attain substantial amplitudes before decaying. Indeed, for M≫1M \gg 1, they are shown to exponentiate M\sqrt{M} times. This may provide a subcritical route to turbulence in tokamaks.Comment: minor revisions; accepted to PPC

    A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)

    Full text link
    The two-state molecular orbital model of the one-dimensional phenyl-based semiconductors is applied to poly(p-phenylene vinylene). The energies of the low-lying excited states are calculated using the density matrix renormalization group method. Calculations of both the exciton size and the charge gap show that there are both Bu and Ag excitonic levels below the band threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94 eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13 phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to decrease due to solvation effects. The lowest triplet state is calculated to be at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison between theory, and two-photon absorption and electroabsorption is made, leading to a consistent picture of the essential states responsible for most of the third-order nonlinear optical properties. An interpretation of the experimental nonlinear optical spectroscopies suggests an energy difference of ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in Physical Review B, 199

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Remote physiological monitoring: Clinical, financial, and behavioral outcomes in a heart failure population

    Get PDF
    This article reports on the outcomes associated with remote physiological monitoring (RPM) conducted as part of a heart failure disease management program. Claims data, medical records, data transmission records, and survey results for 91 individuals ages 50–92 (mean 74 years) successfully completing a heart failure RPM program were analyzed for time periods before, during, and after the monitoring intervention. The program was associated with significant reductions in per member per month costs and emergency room and hospital utilization. More detailed analyses were performed for specific gender and age subgroups. Participant surveys indicated high levels of satisfaction, and improvements in self-perceived health status, self-efficacy, and self-management behaviors. This study is the first to assess the impact of a RPM program following removal of the monitoring equipment. The results indicate that RPM, as a component of a traditional disease management program, has a sustained, beneficial effect on participants’ lifestyles after the monitoring period has ended
    • …
    corecore