762 research outputs found

    Flow Equations for N Point Functions and Bound States

    Full text link
    We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)Comment: 17 pages, HD-THEP-93-3

    Quantum fermions and quantum field theory from classical statistics

    Full text link
    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.Comment: 15 pages, proceedings Emergent Quantum Mechanics, Heinz von Foerster conference, Vienn

    Effective Nonlocal Euclidean Gravity

    Full text link
    A nonlocal form of the effective gravitational action could cure the unboundedness of euclidean gravity with Einstein action. On sub-horizon length scales the modified gravitational field equations seem compatible with all present tests of general relativity and post-Newtonian gravity. They induce a difference in the effective Newton's constant between regions of space with vanishing or nonvanishing curvature scalar (or Ricci tensor). In cosmology they may lead to a value Ω<1\Omega<1 for the critical density after inflation. The simplest model considered here appears to be in conflict with nucleosynthesis, but generalizations consistent with all cosmological observations seem conceivable.Comment: 12 pages, LaTe

    Spontaneous symmetry breaking in the colored Hubbard model

    Full text link
    The Hubbard model is reformulated in terms of different ``colored'' fermion species for the electrons or holes at different lattice sites. Antiferromagnetic ordering or d-wave superconductivity can then be described in terms of translationally invariant expectation values for colored composite scalar fields. A suitable mean field approximation for the two dimensional colored Hubbard model shows indeed phases with antiferromagnetic ordering or d-wave superconductivity at low temperature. At low enough temperature the transition to the antiferromagnetic phase is of first order. The present formulation also allows an easy extension to more complicated microscopic interactions.Comment: 19 pages, 5 figure

    The beta functions of a scalar theory coupled to gravity

    Full text link
    We study a scalar field theory coupled to gravity on a flat background, below Planck's energy. Einstein's theory is treated as an effective field theory. Within the context of Wilson's renormalization group, we compute gravitational corrections to the beta functions and the anomalous dimension of the scalar field, taking into account threshold effects.Comment: 13 pages, plainTe

    Dynamics of dark energy with a coupling to dark matter

    Get PDF
    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modelled as exponential quintessence, and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.Comment: 11 pages, 4 figures, revtex, references adde

    Non-linear Matter Spectra in Coupled Quintessence

    Get PDF
    We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-component matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is enhanced significantly by the extra coupling and can be at the 2-3 percent level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.Comment: 20 pages, 6 figures, typo correcte

    Quintessence with quadratic coupling to dark matter

    Get PDF
    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.Comment: 11 pages, 8 figures, revte

    Effective Action for the Quark-Meson Model

    Full text link
    The scale dependence of an effective average action for mesons and quarks is described by a nonperturbative flow equation. The running couplings lead to spontaneous chiral symmetry breaking. We argue that for strong Yukawa coupling between quarks and mesons the low momentum physics is essentially determined by infrared fixed points. This allows us to establish relations between various parameters related to the meson potential. The results for fπf_\pi and \VEV{\olpsi\psi} are not very sensitive to the poorly known details of the quark--meson effective action at scales where the mesonic bound states form. For realistic constituent quark masses we find fπf_\pi around 100\MeV.Comment: 56 pages (including 10 figures and 1 table), uses epsf.st
    • …
    corecore