675 research outputs found

    Studies on the Biochemistry of Tetrahymena: XIV. The Activity of Natural Purines and Pyrimidines

    Full text link

    Geostationary earth climate sensor: Scientific utility and feasibility, phase A

    Get PDF
    The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features

    The Innermost Stable Circular Orbit of Binary Black Holes

    Full text link
    We introduce a new method to construct solutions to the constraint equations of general relativity describing binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a simple method recently suggested by Brandt and Bruegmann, and quasicircular orbits can then be found by locating a minimum in the binding energy along sequences of constant horizon area. This approach produces binary black holes in a "three-sheeted" manifold structure, as opposed to the "two-sheeted" structure in the conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying manifold structure has a very small effect on the location of the innermost stable circular orbit.Comment: 8 pages, 3 figures, RevTex, submitted to PR

    Evolution systems for non-linear perturbations of background geometries

    Full text link
    The formulation of the initial value problem for the Einstein equations is at the heart of obtaining interesting new solutions using numerical relativity and still very much under theoretical and applied scrutiny. We develop a specialised background geometry approach, for systems where there is non-trivial a priori knowledge about the spacetime under study. The background three-geometry and associated connection are used to express the ADM evolution equations in terms of physical non-linear deviations from that background. Expressing the equations in first order form leads naturally to a system closely linked to the Einstein-Christoffel system, introduced by Anderson and York, and sharing its hyperbolicity properties. We illustrate the drastic alteration of the source structure of the equations, and discuss why this is likely to be numerically advantageous.Comment: 12 pages, 3 figures, Revtex v3.0. Revised version to appear in Physical Review

    3D simulations of linearized scalar fields in Kerr spacetime

    Get PDF
    We investigate the behavior of a dynamical scalar field on a fixed Kerr background in Kerr-Schild coordinates using a 3+1 dimensional spectral evolution code, and we measure the power-law tail decay that occurs at late times. We compare evolutions of initial data proportional to f(r) Y_lm(theta,phi) where Y_lm is a spherical harmonic and (r,theta,phi) are Kerr-Schild coordinates, to that of initial data proportional to f(r_BL) Y_lm(theta_BL,phi), where (r_BL,theta_BL) are Boyer-Lindquist coordinates. We find that although these two cases are initially almost identical, the evolution can be quite different at intermediate times; however, at late times the power-law decay rates are equal.Comment: 12 pages, 9 figures, revtex4. Major revision: added figures, added subsection on convergence, clarified discussion. To appear in Phys Rev

    Einstein boundary conditions for the 3+1 Einstein equations

    Full text link
    In the 3+1 framework of the Einstein equations for the case of vanishing shift vector and arbitrary lapse, we calculate explicitly the four boundary equations arising from the vanishing of the projection of the Einstein tensor along the normal to the boundary surface of the initial-boundary value problem. Such conditions take the form of evolution equations along (as opposed to across) the boundary for certain components of the extrinsic curvature and for certain space-derivatives of the intrinsic metric. We argue that, in general, such boundary conditions do not follow necessarily from the evolution equations and the initial data, but need to be imposed on the boundary values of the fundamental variables. Using the Einstein-Christoffel formulation, which is strongly hyperbolic, we show how three of the boundary equations should be used to prescribe the values of some incoming characteristic fields. Additionally, we show that the fourth one imposes conditions on some outgoing fields.Comment: Revtex 4, 6 pages, text and references added, typos corrected, to appear in Phys. Rev.

    On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation

    Get PDF
    We discuss the analytical determination of the location of the Last Stable Orbit (LSO) in circular general relativistic orbits of two point masses. We use several different ``resummation methods'' (including new ones) based on the consideration of gauge-invariant functions, and compare the results they give at the third post-Newtonian (3PN) approximation of general relativity. Our treatment is based on the 3PN Hamiltonian of Jaranowski and Sch\"afer. One of the new methods we introduce is based on the consideration of the (invariant) function linking the angular momentum and the angular frequency. We also generalize the ``effective one-body'' approach of Buonanno and Damour by introducing a non-minimal (i.e. ``non-geodesic'') effective dynamics at the 3PN level. We find that the location of the LSO sensitively depends on the (currently unknown) value of the dimensionless quantity \oms which parametrizes a certain regularization ambiguity of the 3PN dynamics. We find, however, that all the analytical methods we use numerically agree between themselves if the value of this parameter is \oms\simeq-9. This suggests that the correct value of \oms is near -9 (the precise value \oms^*\equiv-{47/3}+{41/64}\pi^2=-9.3439... seems to play a special role). If this is the case, we then show how to further improve the analytical determination of various LSO quantities by using a ``Shanks'' transformation to accelerate the convergence of the successive (already resummed) PN estimates.Comment: REVTeX, 25 pages, 3 figures, submitted to Phys. Rev.

    Ruling Out Chaos in Compact Binary Systems

    Full text link
    We investigate the orbits of compact binary systems during the final inspiral period before coalescence by integrating numerically the second-order post-Newtonian equations of motion. We include spin-orbit and spin-spin coupling terms, which, according to a recent study by Levin [J. Levin, Phys. Rev. Lett. 84, 3515 (2000)], may cause the orbits to become chaotic. To examine this claim, we study the divergence of initially nearby phase-space trajectories and attempt to measure the Lyapunov exponent gamma. Even for systems with maximally spinning objects and large spin-orbit misalignment angles, we find no chaotic behavior. For all the systems we consider, we can place a strict lower limit on the divergence time t_L=1/gamma that is many times greater than the typical inspiral time, suggesting that chaos should not adversely affect the detection of inspiral events by upcoming gravitational-wave detectors.Comment: 8 pages, 4 figures, submitted to Phys. Rev. Let

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Non-precessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order

    Get PDF
    We derive all second post-Newtonian (2PN), non-precessional effects of spin- orbit coupling on the gravitational wave forms emitted by an inspiraling binary composed of spinning, compact bodies in a quasicircular orbit. Previous post- Newtonian calculations of spin-orbit effects (at 1.5PN order) relied on a fluid description of the spinning bodies. We simplify the calculations by introducing into post-Newtonian theory a delta-function description of the influence of the spins on the bodies' energy-momentum tensor. This description was recently used by Mino, Shibata, and Tanaka (MST) in Teukolsky-formalism analyses of particles orbiting massive black holes, and is based on prior work by Dixon. We compute the 2PN contributions to the wave forms by combining the MST energy-momentum tensor with the formalism of Blanchet, Damour, and Iyer for evaluating the binary's radiative multipoles, and with the well-known 1.5PN order equations of motion for the binary. Our results contribute at 2PN order only to the amplitudes of the wave forms. The secular evolution of the wave forms' phase, the quantity most accurately measurable by LIGO, is not affected by our results until 2.5PN order, at which point other spin-orbit effects also come into play. We plan to evaluate the entire 2.5PN spin-orbit contribution to the secular phase evolution in a future paper, using the techniques of this paper.Comment: 11 pages, submitted to Phys. Rev.
    • …
    corecore