1,006 research outputs found

    Smoothing effect and delocalization of interacting Bose-Einstein condensates in random potentials

    Full text link
    We theoretically investigate the physics of interacting Bose-Einstein condensates at equilibrium in a weak (possibly random) potential. We develop a perturbation approach to derive the condensate wavefunction for an amplitude of the potential smaller than the chemical potential of the condensate and for an arbitrary spatial variation scale of the potential. Applying this theory to disordered potentials, we find in particular that, if the healing length is smaller than the correlation length of the disorder, the condensate assumes a delocalized Thomas-Fermi profile. In the opposite situation where the correlation length is smaller than the healing length, we show that the random potential can be significantly smoothed and, in the meanfield regime, the condensate wavefunction can remain delocalized, even for very small correlation lengths of the disorder.Comment: The word "screening" has been changed to "smoothing" to avoid confusions with other effects discussed in the literature. This does not affect the content of paper, nor the results, nor the physical discussio

    Hadronic Annihilation Decay Rates of P-wave Heavy Quarkonia with Both Relativistic and QCD Radiative Corrections

    Full text link
    Hadronic annihilation decay rates of P-wave heavy quarkonia are given to next-to-leading order in both αs\alpha_s and v2v^2. They include ten nonperturbative parameters, which can be rigorously defined as the matrix elements of color-singlet and color-octet operators in NRQCD. We expect these papameters will be determined from lattice calculations in future.Comment: 5 Pages RevTex. The paper is withdraw

    Thermoluminescence of zircon: a kinetic model

    Get PDF
    The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such amodel. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time annealing at a given temperature. (iv) Heating of the irradiated sample to simulate TL experiments both after laboratory and natural irradiation. The input parameters of the model, such as the types and concentrations of the TL centres and the energy distributions of the hole and electron traps, were obtained by analysing the experimental data on fading of the TL-emission spectra of samples from different geological locations. Electron paramagnetic resonance (EPR) data were used to establish the nature of the TL centres. Glow curves and 3D TL emission spectra are simulated and compared with the experimental data on time-dependent TL fading. The saturation and annealing behaviour of filled trap concentrations has been considered in the framework of the proposed kinetic model and comparedwith the EPR data associated with the rare-earth ions Tb3+ and Dy3+, which play a crucial role as hole traps and recombination centres. Inaddition, the behaviour of some of the SiOmn− centres has been compared with simulation results.

    Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials

    Full text link
    We theoretically investigate the localization of an expanding Bose-Einstein condensate with repulsive atom-atom interactions in a disordered potential. We focus on the regime where the initial inter-atomic interactions dominate over the kinetic energy and the disorder. At equilibrium in a trapping potential and for small disorder, the condensate shows a Thomas-Fermi shape modified by the disorder. When the condensate is released from the trap, a strong suppression of the expansion is obtained in contrast to the situation in a periodic potential with similar characteristics. This effect crucially depends on both the momentum distribution of the expanding BEC and the strength of the disorder. For strong disorder, the suppression of the expansion results from the fragmentation of the core of the condensate and from classical reflections from large modulations of the disordered potential in the tails of the condensate. We identify the corresponding disorder-induced trapping scenario for which large atom-atom interactions and strong reflections from single modulations of the disordered potential play central roles. For weak disorder, the suppression of the expansion signals the onset of Anderson localization, which is due to multiple scattering from the modulations of the disordered potential. We compute analytically the localized density profile of the condensate and show that the localization crucially depends on the correlation function of the disorder. In particular, for speckle potentials the long-range correlations induce an effective mobility edge in 1D finite systems. Numerical calculations performed in the mean-field approximation support our analysis for both strong and weak disorder.Comment: New Journal of Physics; focus issue "Quantum Correlations in Tailored Matter - Common perspectives of mesoscopic systems and quantum gases"; 30 pages, 10 figure

    Complete O(v^2) corrections to the static interquark potential from SU(3) gauge theory

    Get PDF
    For the first time, we determine the complete spin- and momentum-dependent order v^2 corrections to the static interquark potential from simulations of QCD in the valence quark approximation at inverse lattice spacings of 2-3 GeV. A new flavor dependent correction to the central potential is found. We report a 1/r^2 contribution to the long range spin-orbit potential V_1'. The other spin-dependent potentials turn out to be short ranged and can be well understood by means of perturbation theory. The momentum-dependent potentials qualitatively agree with minimal area law expectations. In view of spectrum calculations, we discuss the matching of the effective nonrelativistic theory to QCD as well as renormalization of lattice results. In a first survey of the resulting bottomonia and charmonia spectra we reproduce the experimental levels within average errors of 12.5 MeV and 22 MeV, respectively.Comment: 54 pages REVTeX with 24 encapsuled ps figure

    The Heavy Hadron Spectrum

    Get PDF
    I discuss the spectrum of hadrons containing heavy quarks (bb or cc), and how well the experimental results are matched by theoretical ideas. Useful insights come from potential models and applications of Heavy Quark Symmetry and these can be compared with new numerical results from the ab initio methods of Lattice QCD.Comment: 64 pages, Latex, lectures at Schladming Winter School 199

    Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence

    Get PDF
    Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. Objectives: We applied artificial intelligence (AI) to analyze a single apical four-chamber (A4C) transthoracic echocardiogram videoclip to detect HFpEF. Methods: A three-dimensional convolutional neural network was developed and trained on A4C videoclips to classify patients with HFpEF (diagnosis of HF, EF≥50%, and echocardiographic evidence of increased filling pressure; cases) versus without HFpEF (EF≥50%, no diagnosis of HF, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or non-diagnostic (high uncertainty). Performance was assessed in an independent multi-site dataset and compared to previously validated clinical scores. Results: Training and validation included 2971 cases and 3785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (AUROC:0.97 [95%CI:0.96-0.97] and 0.95 [0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were non-diagnostic; sensitivity (87.8%; 84.5-90.9%) and specificity (81.9%; 78.2-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the HFA-PEFF and H2FPEF scores, the AI HFpEF model correctly reclassified 73.5 and 73.6%, respectively. During follow-up (median [IQR]:2.3 [0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (hazard ratio [95%CI]:1.9 [1.5-2.4]). Conclusion: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with versus without HFpEF, more often than clinical scores, and identified patients with higher mortality

    Inelastic Light Scattering From Correlated Electrons

    Full text link
    Inelastic light scattering is an intensively used tool in the study of electronic properties of solids. Triggered by the discovery of high temperature superconductivity in the cuprates and by new developments in instrumentation, light scattering both in the visible (Raman effect) and the X-ray part of the electromagnetic spectrum has become a method complementary to optical (infrared) spectroscopy while providing additional and relevant information. The main purpose of the review is to position Raman scattering with regard to single-particle methods like angle-resolved photoemission spectroscopy (ARPES), and other transport and thermodynamic measurements in correlated materials. Particular focus will be placed on photon polarizations and the role of symmetry to elucidate the dynamics of electrons in different regions of the Brillouin zone. This advantage over conventional transport (usually measuring averaged properties) indeed provides new insights into anisotropic and complex many-body behavior of electrons in various systems. We review recent developments in the theory of electronic Raman scattering in correlated systems and experimental results in paradigmatic materials such as the A15 superconductors, magnetic and paramagnetic insulators, compounds with competing orders, as well as the cuprates with high superconducting transition temperatures. We present an overview of the manifestations of complexity in the Raman response due to the impact of correlations and developing competing orders. In a variety of materials we discuss which observations may be understood and summarize important open questions that pave the way to a detailed understanding of correlated electron systems.Comment: 62 pages, 48 figures, to appear in Rev. Mod. Phys. High-resolution pdf file available at http://onceler.uwaterloo.ca/~tpd/RMP.pd

    QCD predictions for annihilation decays of P-wave quarkonia to next-to-leading order in αs\alpha_s

    Get PDF
    The decay rates of P-wave heavy quarkonia to light hadrons are presented to leading order in v2v^2 and next-to-leading order in αs\alpha_s. They include contributions from both the color-singlet component and the color-octet component of quarkonia. Applying these results to charmonium and using measured decay rates for the χc1\chi_{c1} and χc2\chi_{c2} by E760, we determine the two nonperturbative decay matrix elements, and then predict the hadronic decay rates of χc0\chi_{c0} and hch_c, and the electromagnetic decay rates of χc0\chi_{c0} and χc2\chi_{c2}. The obtained decay rates of χc0LH\chi_{c0}\to LH and χc0γγ\chi_{c0}\to\gamma\gamma are in agreement with the Crystal Ball result, and also with the new measurement by BES. However, the results for Γ(χc0LH)\Gamma(\chi_{c0}\to LH) are dependent on the choice of renormalization scale.Comment: 10 pages Latex(5 figures included). We have corrected a numerical error in Eq.(5) and Eq.(11

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
    corecore