1,316 research outputs found

    Absence of low-temperature dependence of the decay of 7Be and 198Au in metallic hosts

    Full text link
    The electron-capture (EC) decay rate of 7Be in metallic Cu host and the beta-decay rate of 198Au in the host alloy Al-Au have been measured simultaneously at several temperatures, ranging from 0.350 K to 293 K. No difference of the half-life of 198Au between 12.5 K and 293 K is observed to a precision of 0.1%. By utilizing the special characteristics of our double-source assembly, possible geometrical effects that influence the individual rates could be eliminated. The ratio of 7Be to 198Au activity thus obtained also remains constant for this temperatures range to the experimental precision of 0.15(0.16)%. The resulting null temperature dependence is discussed in terms of the inadequacy of the often-used Debye-Huckel model for such measurements.Comment: Four pages, three figures. Accepted for publication in Phys. Rev. C (Rapd Communications

    Noncyclic covers of knot complements

    Full text link
    Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, Φ(c)\Phi (c), such that if KK is a nontrivial knot in the three-sphere with a diagram with cc crossings and a particularly simple JSJ decomposition then the complement of KK has a finite-sheeted, noncyclic cover with at most Φ(c)\Phi (c) sheets.Comment: 29 pages, 8 figures, from Ph.D. thesis at Columbia University; Acknowledgments added; Content correcte

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    Theory of laser-induced demagnetization at high temperatures

    Full text link
    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins and lattice. Assuming that the demagnetization processes take place during the thermalization of the sub-systems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnons and electron-phonons interaction, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat assisted magnetic recording.Comment: 11 Pages, 7 Figure

    Anomalous Behavior of 2+ Excitations around 132Sn

    Get PDF
    In certain neutron-rich Te isotopes, a decrease in the energy of the first excited 2+ state is accompanied by a decrease in the E2 strength to that state from the ground state, contradicting simple systematics and general intuition about quadrupole collectivity. We use a separable quadrupole-plus-pairing Hamiltonian and the quasiparticle random phase approximation to calculate energies, B(E2,0+ -> 2+) strengths, and g factors for the lowest 2+ states near 132Sn (Z >= 50). We trace the anomalous behavior in the Te isotopes to a reduced neutron pairing above the N = 82 magic gap.Comment: 1 figure added. to be published in Phys. Rev.

    Mechanisms of Manganese-Assisted Nonradiative Recombination in Cd(Mn)Se/Zn(Mn)Se Quantum Dots

    Full text link
    Mechanisms of nonradiative recombination of electron-hole complexes in Cd(Mn)Se/Zn(Mn)Se quantum dots accompanied by interconfigurational excitations of Mn2+^{2+} ions are analyzed within the framework of single electron model of deep {\it 3d}-levels in semiconductors. In addition to the mechanisms caused by Coulomb and exchange interactions, which are related because of the Pauli principle, another mechanism due to {\it sp-d} mixing is considered. It is shown that the Coulomb mechanism reduces to long-range dipole-dipole energy transfer from photoexcited quantum dots to Mn2+^{2+} ions. The recombination due to the Coulomb mechanism is allowed for any states of Mn2+^{2+} ions and {\it e-h} complexes. In contrast, short-range exchange and spd{\it sp-d} recombinations are subject to spin selection rules, which are the result of strong {\it lh-hh} splitting of hole states in quantum dots. Estimates show that efficiency of the {\it sp-d} mechanism can considerably exceed that of the Coulomb mechanism. The phonon-assisted recombination and processes involving upper excited states of Mn2+^{2+} ions are studied. The increase in PL intensity of an ensemble of quantum dots in a magnetic field perpendicular to the sample growth plane observed earlier is analyzed as a possible manifestation of the spin-dependent recombination.Comment: 14 pages, 2 figure

    Experimental evidence of strong phonon scattering in isotopical disordered systems: The case of LiH_xD_{1-x} crystals

    Full text link
    The observation of the local - mode vibration, the two - mode behavior of the LO phonons at large isotope concentration, as well as large line broadening in LIH - D mixed crystals directly evidence strong additional phonon scattering due to the isotope - induced disorder.Comment: 9 pages, 4 figure

    The Optical Design and Characterization of the Microwave Anisotropy Probe

    Full text link
    The primary goal of the MAP satellite, now in orbit, is to make high fidelity polarization sensitive maps of the full sky in five frequency bands between 20 and 100 GHz. From these maps we will characterize the properties of the cosmic microwave background (CMB) anisotropy and Galactic and extragalactic emission on angular scales ranging from the effective beam size, <0.23 degree, to the full sky. MAP is a differential microwave radiometer. Two back-to-back shaped offset Gregorian telescopes feed two mirror symmetric arrays of ten corrugated feeds. We describe the prelaunch design and characterization of the optical system, compare the optical models to the measurements, and consider multiple possible sources of systematic error.Comment: ApJ in press; 22 pages with 11 low resolution figures; paper is available with higher quality figures at http://map.gsfc.nasa.gov/m_mm/tp_links.htm

    A New Precision Measurement of the 7Be(p,gamma)8B Cross section with an Implanted 7Be Target

    Full text link
    The 7Be(p,gamma)8B reaction plays a central role in the evaluation of solar neutrino fluxes. We report on a new precision measurement of the cross section of this reaction, following our previous experiment with an implanted 7Be target, a raster scanned beam and the elimination of the backscattering loss. The new measurement incorporates a more abundant 7Be target and a number of improvements in design and procedure. The point at Elab=991 keV was measured several times under varying conditions, yielding a value of S17(Ec.m. =850 keV) = 24.0(5) eV b. Measurements were carried out at lower energies as well. Due to the precise knowledge of the implanted 7Be density profile it was possible to reconstitute both the off- and on resonance parts of the cross section and to obtain from the entire set of measurements an extrapolated value of S17(0)=21.2(7) eV b.Comment: 4 Pages, 3 Figure

    Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2

    Full text link
    Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was pre-assigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.Comment: 27 pages, 8 figure
    corecore