266 research outputs found

    Integrable and superintegrable systems with spin in three-dimensional Euclidean space

    Full text link
    A systematic search for superintegrable quantum Hamiltonians describing the interaction between two particles with spin 0 and 1/2, is performed. We restrict to integrals of motion that are first-order (matrix) polynomials in the components of linear momentum. Several such systems are found and for one non-trivial example we show how superintegrability leads to exact solvability: we obtain exact (nonperturbative) bound state energy formulas and exact expressions for the wave functions in terms of products of Laguerre and Jacobi polynomials.Comment: 23 page

    Third order superintegrable systems separating in polar coordinates

    Full text link
    A complete classification is presented of quantum and classical superintegrable systems in E2E_2 that allow the separation of variables in polar coordinates and admit an additional integral of motion of order three in the momentum. New quantum superintegrable systems are discovered for which the potential is expressed in terms of the sixth Painlev\'e transcendent or in terms of the Weierstrass elliptic function

    Superintegrable systems with spin and second-order integrals of motion

    Full text link
    We investigate a quantum nonrelativistic system describing the interaction of two particles with spin 1/2 and spin 0, respectively. We assume that the Hamiltonian is rotationally invariant and parity conserving and identify all such systems which allow additional integrals of motion that are second order matrix polynomials in the momenta. These integrals are assumed to be scalars, pseudoscalars, vectors or axial vectors. Among the superintegrable systems obtained, we mention a generalization of the Coulomb potential with scalar potential V0=αr+328r2V_0=\frac{\alpha}{r}+\frac{3\hbar^2}{8r^2} and spin orbital one V1=2r2V_1=\frac{\hbar}{2r^2}.Comment: 32 page

    Hamiltonians separable in cartesian coordinates and third-order integrals of motion

    Full text link
    We present in this article all Hamiltonian systems in E(2) that are separable in cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-De Vries equation and the Painlev\'e transcendents.Comment: 19 pages, Will be published in J. Math. Phy

    Superintegrability with third order invariants in quantum and classical mechanics

    Full text link
    We consider here the coexistence of first- and third-order integrals of motion in two dimensional classical and quantum mechanics. We find explicitly all potentials that admit such integrals, and all their integrals. Quantum superintegrable systems are found that have no classical analog, i.e. the potentials are proportional to \hbar^2, so their classical limit is free motion.Comment: 15 page

    Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective

    Get PDF
    The complexities of modern biomedicine are rapidly increasing. Thus, modeling and simulation have become increasingly important as a strategy to understand and predict the trajectory of pathophysiology, disease genesis, and disease spread in support of clinical and policy decisions. In such cases, inappropriate or ill-placed trust in the model and simulation outcomes may result in negative outcomes, and hence illustrate the need to formalize the execution and communication of modeling and simulation practices. Although verification and validation have been generally accepted as significant components of a model\u27s credibility, they cannot be assumed to equate to a holistic credible practice, which includes activities that can impact comprehension and in-depth examination inherent in the development and reuse of the models. For the past several years, the Committee on Credible Practice of Modeling and Simulation in Healthcare, an interdisciplinary group seeded from a U.S. interagency initiative, has worked to codify best practices. Here, we provide Ten Rules for credible practice of modeling and simulation in healthcare developed from a comparative analysis by the Committee\u27s multidisciplinary membership, followed by a large stakeholder community survey. These rules establish a unified conceptual framework for modeling and simulation design, implementation, evaluation, dissemination and usage across the modeling and simulation life-cycle. While biomedical science and clinical care domains have somewhat different requirements and expectations for credible practice, our study converged on rules that would be useful across a broad swath of model types. In brief, the rules are: (1) Define context clearly. (2) Use contextually appropriate data. (3) Evaluate within context. (4) List limitations explicitly. (5) Use version control. (6) Document appropriately. (7) Disseminate broadly. (8) Get independent reviews. (9) Test competing implementations. (10) Conform to standards. Although some of these are common sense guidelines, we have found that many are often missed or misconstrued, even by seasoned practitioners. Computational models are already widely used in basic science to generate new biomedical knowledge. As they penetrate clinical care and healthcare policy, contributing to personalized and precision medicine, clinical safety will require established guidelines for the credible practice of modeling and simulation in healthcare

    Canonical transformations of the extended phase space, Toda lattices and Stackel family of integrable systems

    Full text link
    We consider compositions of the transformations of the time variable and canonical transformations of the other coordinates, which map completely integrable system into other completely integrable system. Change of the time gives rise to transformations of the integrals of motion and the Lax pairs, transformations of the corresponding spectral curves and R-matrices. As an example, we consider canonical transformations of the extended phase space for the Toda lattices and the Stackel systems.Comment: LaTeX2e + Amssymb, 22p

    Light Hadron Masses from Lattice QCD

    Get PDF
    This article reviews lattice QCD results for the light hadron spectrum. We give an overview of different formulations of lattice QCD, with discussions on the fermion doubling problem and improvement programs. We summarize recent developments in algorithms and analysis techniques, that render calculations with light, dynamical quarks feasible on present day computer resources. Finally, we summarize spectrum results for ground state hadrons and resonances using various actions.Comment: 53 pages, 24 figures, one table; Rev.Mod.Phys. (published version); v2: corrected typ

    Leonard Euler: addition theorems and superintegrable systems

    Full text link
    We consider the Euler approach to construction and to investigation of the superintegrable systems related to the addition theorems. As an example we reconstruct Drach systems and get some new two-dimensional superintegrable Stackel systems.Comment: The text of the talk at International Conference Geometry, Dynamics, Integrable Systems, September 2-7, 2008, Belgrade, Serbia, LaTeX, 18 page
    corecore