2,189 research outputs found

    Similitudes climatiques des massifs laurentien et gaspésien

    Get PDF
    Il existe sur le territoire québécois deux régions montagneuses d'importance : le massif laurentien et le massif gaspésien. Ces régions présentent une altitude moyenne à peu près égale et la proximité de la mer du massif gaspésien peut compenser, en fait d'influences climatiques, sa latitude relativement plus élevée que celle du massif laurentien. On peut donc supposer, sur leurs superficies respectives, la présence d'un même type de climat. En effet, une revue d'études antérieures et l'analyse des données météorologiques recueillies dans ces massifs suffisent pour identifier de nombreuses similitudes climatiques, affirmer que les deux massifs appartiennent au même type de climat et conclure que leurs légères différences sont probablement dues à l'influence continentale dans le cas du massif laurentien et à la proximité de la mer dans celui du massif gaspésien.There exists in the Province of Québec two important mountainous regions : the Laurentian and Gaspesian ranges. The average elevations of these two areas are approximately equal and the climatic effect on the Gaspesian range which is at a higher latitude, may be compensated by it being surrounded by the sea. This would therefore support the assumption that the same type of climate exists in both areas. In effect, a review of available literature as well as the analysis of meteorological data accumulated in these mountains show many climatic similarities which confirm the presence of the same type of climate, except for minor differences which are probably due to continental influences on the Laurentian range and the proximity of the ocean to the Gaspesian range

    Bref aperçu climatique du Québec méridional

    Get PDF

    Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    Get PDF
    International audienceTo understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 ÎĽm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface

    Handling Geometric Features in Nanoscale Characterization of Charge Injection and Transport in thin Dielectric Films

    Get PDF
    International audienceDue to miniaturization and attractiveness of nanosized and/or nanostructured dielectric layers, characterization at the local scale of charge injection and transport phenomena comes to the fore. To that end the electric modes derived from Atomic Force Microscopy (AFM) are more and more frequently used. In this study, the influence of AFM tip-plane system configuration on the electric field distribution is investigated for homogeneous and heterogeneous (nanostructured) thin dielectric layers. The experimental and computing results reveal that the radial component of the electric field conveys the charge lateral spreading whereas the axial component of the electric field governs the amount of injected charges. The electric field distribution is slightly influenced by the heterogeneity of the material. Moreover, the interpretation of the current measurements requires consideration of the entire electric field distribution and not only the computed field at the contact point

    Characterization of the Electrical Behaviour of Thin Dielectric Films at Nanoscale using Methods Derived from Atomic Force Microscopy: Application to Plasma Deposited AgNPs-Based Nanocomposites

    Get PDF
    International audienceRecent advances in the development of micro-and nano-devices call for applications of thin nanocomposite dielectric films (thickness less than few tens of nanometers) with tuneable electrical properties. For optimization purposes, their behaviour under electrical stress needs to be probed at relevant scale, i.e. nanoscale. To that end electrical modes derived from Atomic Force Microscopy (AFM) appear the best methods due to their nanoscale resolution and non-destructive nature which permits in-situ characterization. The potentialities of electrical modes derived from AFM are presented in this work. The samples under study consist of plasma processed thin dielectric silica layers with embedded silver nanoparticles (AgNPs). Charge injection at local scale, performed by using AFM tip, is investigated by Kelvin Probe Force Microscopy (KPFM). Modulation of the local permittivity induced by the presence of AgNPs is assessed by Electrostatic Force Microscopy (EFM)

    Charge injection phenomena at the metal/dielectric interface investigated by Kelvin probe force microscopy

    Get PDF
    International audienceThe understanding of charge injection mechanism at metal/dielectric interface is crucial in many applications. A direct probe of such phenomenon requires a charge measurement method whose spatial resolution is compatible with the characteristic scale of phenomena occurring after injection, like charge trapping, and with the geometry of samples under investigation. In this paper, charge injection at metal/dielectric interface and their motion in silicon nitride layer under tunable electric field are probed at nanoscale using a technique derived from Atomic Force Microscopy. This was achieved by realizing embedded lateral electrode structures and using surface potential measurement by Kelvin Probe Force Microscopy (KPFM) to provide voltage, field and charge profiles close to the metal/dielectric interface during and after biasing the electrodes. The influence of electric field enhancement at the interface due to the electrode geometry was accounted for. Electron and hole mobility was estimated from surface potential profiles obtained under polarization. Charge dynamic was investigated during depolarization steps

    Charges injection investigation at metal/dielectric interfaces by Kelvin Probe Force Microscopy

    Get PDF
    International audienceCharges injection at metal/dielectric interface and their motion in silicon nitride layer is investigated using samples with embedded lateral electrodes and surface potential measurement by Kelvin Probe Force Microscopy (KPFM). Bipolar charge injection was evidenced using this method. From surface potential profile, charge density distribution is extracted by using Poisson's equation. The evolution of the charge density profile with polarization bias and depolarization time was also investigated

    Waiting and Residence Times of Brownian Interface Fluctuations

    Full text link
    We report on the residence times of capillary waves above a given height hh and on the typical waiting time in between such fluctuations. The measurements were made on phase separated colloid-polymer systems by laser scanning confocal microscopy. Due to the Brownian character of the process, the stochastics vary with the chosen measurement interval Δt\Delta t. In experiments, the discrete scanning times are a practical cutoff and we are able to measure the waiting time as a function of this cutoff. The measurement interval dependence of the observed waiting and residence times turns out to be solely determined by the time dependent height-height correlation function g(t)g(t). We find excellent agreement with the theory presented here along with the experiments.Comment: 5 figure

    Interface properties in dielectrics: A cross-section analysis by atomic force microscopy

    Get PDF
    International audienceEven if interfaces are more and more investigated their properties remain partially unknown, especially as regards their electronic properties. This is mainly related to the lack of characterization at relevant scale. In this context, electrical modes derivate from Atomic Force Microscopy appear well adapted. In this paper, a method to probe space charge at nanoscale is proposed. This method is based on surface potential measurement by Kelvin Probe Force Microscopy (KPFM) and post-processing technique based either on numerical derivation or Finite Element Method. Through these methods, densities of interface charges and injected charges were determined at different metal/dielectric interfaces

    Ultrafast All-Optical Switching In Semiconductor Nonlinear Directional-Couplers At Half The Band-Gap

    Get PDF
    Efficient ultrafast all-optical switching in nonlinear directional couplers made of AlGaAs and AlGaAs/GaAs quantum wells near half the band gap is reported. The switching is limited by multiphoton absorption which is dominated by three-photon absorption in this spectral range. The three-photon absorption in the quantum well nonlinear directional coupler is stronger than that of bulk AlGaAs. Autocorrelations of the output pulses in the bar and cross states confirm pulse breakup through nonlinear coupling, and illustrate the effects of multiphoton absorption. All sets of experimental data are fitted well by a theoretical model
    • …
    corecore