46 research outputs found

    Two coupled qubits under the influence of a minimal, phase-sensitive environment

    Full text link
    In this work, we investigate the influence of a minimal, phase-sensitive environment on a system of two coupled qubits. The environment is constituted by a single-mode field initially prepared in a type of Schr\"odinger cat state, a quantum superposition of two squeezed coherent states. We present an analytical solution to the model and investigate the degradation of the quantum features of the system due to the action of the environment. In particular, we find that the time-averaged linear entropy for long times, SˉT\bar{S}_T, has approximately a linear dependence on Mandel's QQ parameter as well as on the variance of the X^\hat{X} quadrature of the initial state of the environment.Comment: 14 pages, 13 figures. This version contains an additional section about the dynamics of quantum coherenc

    Sudden death of entanglement induced by a minimal thermal environment

    Full text link
    We study the dynamics of two interacting two-level systems (qubits) having one of them isolated and the other coupled to a single mode electromagnetic field in a thermal state. The field plays the role of a small environment, in contrast to the usual approach of modeling an environment via a thermal reservoir with many degrees of freedom. We find the analytical solution of the proposed model, which allows us to investigate the consequences of the coupling to the small environment on characteristic quantum features of the two-qubit system. We study the time evolution of quantum entanglement and coherence, verifying the dependence on the relevant coupling constants as well as the influence of the effective temperature of the environment. Interestingly, we find that both sudden death and sudden birth of entanglement may occur in such a simple system. We also discuss a different partition, in which the isolated qubit is considered to be coupled to a composite environment, constituted by the other qubit plus the field mode.Comment: References added; additional figures also included in this versio

    Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

    Full text link
    We introduce the NN-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-QQ cavity. We finally discuss the implementation of the proposed schemes.Comment: 4 pages, 3 figures. Title changed (published version

    Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities

    Get PDF
    We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.Comment: 5 pages, 1 figur

    Entanglement capability of self-inverse Hamiltonian evolution

    Full text link
    We determine the entanglement capability of self-inverse Hamiltonian evolution, which reduces to the known result for Ising Hamiltonian, and identify optimal input states for yielding the maximal entanglement rate. We introduce the concept of the operator entanglement rate, and find that the maximal operator entanglement rate gives a lower bound on the entanglement capability of a general Hamiltonian.Comment: 4 pages, no figures. Version 3: small change

    Recovering coherence from decoherence: a method of quantum state reconstruction

    Get PDF
    We present a feasible scheme for reconstructing the quantum state of a field prepared inside a lossy cavity. Quantum coherences are normally destroyed by dissipation, but we show that at zero temperature we are able to retrieve enough information about the initial state, making possible to recover its Wigner function as well as other quasiprobabilities. We provide a numerical simulation of a Schroedinger cat state reconstruction.Comment: 8 pages, in RevTeX, 4 figures, accepted for publication in Phys. Rev. A (november 1999

    On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes-Cummings model

    Full text link
    In this paper we discuss the quantum properties for superposition of squeezed displaced number states against multiphoton Jaynes-Cummings model (JCM). In particular, we investigate atomic inversion, photon-number distribution, purity, quadrature squeezing, Mandel QQ parameter and Wigner function. We show that the quadrature squeezing for three-photon absorption case can exhibit revivals and collapses typical to those occurring in the atomic inversion for one-photon absorption case. Also we prove that for odd number absorption parameter there is a connection between the evolution of the atomic inversion and the evolution of the Wigner function at the origin in phase space. Furthermore, we show that the nonclassical states whose the Wigner functions values at the origins are negative will be always nonclassical when they are evolving through the JCM with even absorption parameter. Also we demonstrate that various types of cat states can be generated via this system.Comment: 27 pages, 10 figure
    corecore