1,378 research outputs found

    Proceedings of the Second Airborne Imaging Spectrometer Data Analysis Workshop

    Get PDF
    Topics addressed include: calibration, the atmosphere, data problems and techniques, geological research, and botanical and geobotanical research

    Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop

    Get PDF
    The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase

    JPL airborne instruments activities

    Get PDF
    Two instruments intended for flight aboard aircraft for research in advanced remote sensing of the earth are under development: the airborne imaging spectrometer (AIS) and the airborne visible-infrared imaging spectrometer (AVIRIS). The AIS utilizes a 32 x 32 element HgCdTe CCD array to gather 10nm spectral data, initially in the 1.2 to 2.4 micron range, with 32 pixels of cross-track spatial data. The instrument acquires 128 channels of spectral data by using a grating spectrometer whose grating is stepped through four positions during a fraction of an IFOV time on the ground. With an IFOV of 2 mrad, the GIFOV at the design altitude of 3 km is 6m. The instrument has several on-board processing capabilities including ax+b corrections for detector calibration, cross-track and down-track pixel summing, spectral band summing, and variable integration time to allow flight at various altitudes and velocities. The AVIRIS uses a proven scanning mechanism to acquire the spatial data in a whisk broom mode. The spectral coverage is from 0.35 to 2.5 microns at bandwidths ranging from 10 to 20 nm

    Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season

    Get PDF
    Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes

    Exact Z2Z^2 scaling of pair production in the high-energy limit of heavy-ion collisions

    Get PDF
    The two-center Dirac equation for an electron in the external electromagnetic field of two colliding heavy ions in the limit in which the ions are moving at the speed of light is exactly solved and nonperturbative amplitudes for free electron-positron pair production are obtained. We find the condition for the applicability of this solution for large but finite collision energy, and use it to explain recent experimental results. The observed scaling of positron yields as the square of the projectile and target charges is a result of an exact cancellation of a nonperturbative charge dependence and holds as well for large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    Get PDF
    A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed

    SCIENCECRAFT

    Get PDF
    The technological capabilities are now at hand to design an integrated system that combine science instruments, spacecraft and propulsion elements into a single system. The authors have called this a Sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of the objects visited and characterizing their atmospheres both in emission and absorption (against the sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The SCIENCECRAFT is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations

    A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We perform a gauge-transformation on the time-dependent Dirac equation describing the evolution of an electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction. We solve, in an ultra-relativistic limit, the gauged-transformed Dirac equation using light-front variables and a light-fronts representation, obtaining non-perturbative results for the free pair-creation amplitudes in the collider frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while non-perturbative effects arise for realistic charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR

    Coulomb Effects on Electromagnetic Pair Production in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We discuss the implications of the eikonal amplitude on the pair production probability in ultrarelativistic heavy-ion transits. In this context the Weizs\"acker-Williams method is shown to be exact in the ultrarelativistic limit, irrespective of the produced particles' mass. A new equivalent single-photon distribution is derived which correctly accounts for the Coulomb distortions. As an immediate application, consequences for unitarity violation in photo-dissociation processes in peripheral heavy-ion encounters are discussed.Comment: 13 pages, 4 .eps figure
    corecore