3,241 research outputs found

    Dispersive and absorptive corrections to the pion-deuteron scattering length

    Get PDF
    We present a parameter--free calculation of the dispersive and absorptive contributions to the pion--deuteron scattering length based on chiral perturbation theory. We show that once all diagrams contributing to leading order to this process are included, their net effect provides a small correction to the real part of the pion--deuteron scattering length. At the same time the sizable imaginary part of the pion--deuteron scattering length is reproduced accurately.Comment: Numerical error corrected. Results for dispersive corrections changed - conclusions unchanged. Version as accepted by Phys. Lett.

    Muon pair production by muons and narrow muon bundles underground

    Get PDF
    We consider the process of muon pair production by high-energy muons and its consequences for the characteristics of muon flux underground. It is shown that the accounting of this process in the muon propagation through the rock results in an additional flux of narrow double- and triple-muon events which is comparable to the conventional flux of narrow muon bundles with low multiplicity

    Role of the electromagnetic processes in the high-energy muon production

    Get PDF
    The muon pair production by gammas in the atmosphere is discussed as a mechanism of “prompt” muon production at very high energies. It is shown that this process dominates over the conventional muon production through pion and kaon decay at energies greater than several PeV

    KKbar molecules with momentum-dependent interactions

    Full text link
    It is shown that the momentum-dependent kaon-antikaon interactions generated via vector meson exchange from the standard SU_V(3) x SU_A(3) interaction Lagrangian lead to a non-local potential in coordinate space that can be incorporated without approximation into a non-relativistic version of the Bethe-Salpeter wave equation containing a radial-dependent effective kaon mass appearing in a fully symmetrized kinetic energy operator, in addition to a local potential. Estimates of the mass and decay widths of f_0(980) and a_0(980), considered as KKbar molecules of isospin 0 and 1, as well as for K^+K^- atomic bound states (kaonium) are presented, and compared with previous studies of a similar nature. It is argued that without a better knowledge of hadronic form factors it is not possible to distinguish between the molecular versus elementary particle models for the structure of the light scalar mesons.Comment: 14 pages, 2 tables, 5 figures. Added subsection on s-channel exchange, additional remarks on the possible effect of gluon exchange, and 1 additional figur

    Example of a self-consistent solution for a fermion on domain wall

    Full text link
    We discuss a self-consistent solution for a fermion coupled to static scalar field in the form of a kink (domain wall). In particular, we study the case when the fermion occupies an excited non-zero frequency level in the presence of the domain wall field. The effect of the domain wall profile distortion is calculated analytically.Comment: 9 pages, no figures; minor corrections, one reference added, results unchange

    The Zel'dovich effect and evolution of atomic Rydberg spectra along the Periodic Table

    Full text link
    In 1959 Ya. B. Zel'dovich predicted that the bound-state spectrum of the non-relativistic Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar reconstruction whenever this potential alone supports a low-energy scattering resonance. However documented experimental evidence of this effect has been lacking. Previous theoretical studies of this phenomenon were confined to the regime where the range of the short-ranged potential is much smaller than Bohr's radius of the Coulomb field. We go beyond this limitation by restricting ourselves to highly-excited s states. This allows us to demonstrate that along the Periodic Table of elements the Zel'dovich effect manifests itself as systematic periodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic number. This dependence, which is supported by analysis of experimental and numerical data, has its origin in the binding properties of the ionic core of the atom.Comment: 17 pages, 12 figure

    Stable branches of a solution for a fermion on domain wall

    Full text link
    We discuss the case when a fermion occupies an excited non-zero frequency level in the field of domain wall. We demonstrate that a solution exists for the coupling constant in the limited interval 1<g<gmax≈1.651<g<g_{max}\approx 1.65. We show that indeed there are different branches of stable solution for gg in this interval. The first one corresponds to a fermion located on the domain wall (1<g<2π41<g<\sqrt[4]{2\pi}). The second branch, which belongs to the interval 2π4≀g≀gmax\sqrt[4]{2\pi}\le g\le g_{max}, describes a polarized fermion off the domain wall. The third branch with 1<g<gmax1<g<g_{max} describes an excited antifermion in the field of the domain wall.Comment: 15 pages, 7 figures, references adde
    • 

    corecore