13,921 research outputs found

    Detecting D-Wave Pairing and Collective Modes in Fermionic Condensates with Bragg Scattering

    Full text link
    We show how the appearance of d-wave pairing in fermionic condensates manifests itself in inelastic light scattering. Specifically, we calculate the Bragg scattering intensity from the dynamic structure factor and the spin susceptibility, which can be inferred from spin flip Raman transitions. This information provides a precise tool with which we can identify nontrivial correlations in the state of the system beyond the information contained in the density profile imaging alone. Due to the lack of Coulomb effects in neutral superfluids, this is also an opportunity to observe the Anderson-Bogoliubov collective mode

    Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor

    Get PDF
    We demonstrate an all-optical delay line in hot cesium vapor that tunably delays 275 ps input pulses up to 6.8 ns and 740 input ps pulses up to 59 ns (group index of approximately 200) with little pulse distortion. The delay is made tunable with a fast reconfiguration time (hundreds of ns) by optically pumping out of the atomic ground states.Comment: 4 pages, 6 figure

    Bounds on Heavy-to-Heavy Mesonic Form Factors

    Get PDF
    We provide upper and lower bounds on the form factors for B -> D, D^* by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form factor models used in the literature. All the models we investigated failed to fall within the bounds for the combination of form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure

    Ginzburg-Landau equation bound to the metal-dielectric interface and transverse nonlinear optics with amplified plasmon polaritons

    Full text link
    Using a multiple-scale asymptotic approach, we have derived the complex cubic Ginzburg-Landau equation for amplified and nonlinearly saturated surface plasmon polaritons propagating and diffracting along a metal-dielectric interface. An important feature of our method is that it explicitly accounts for nonlinear terms in the boundary conditions, which are critical for a correct description of nonlinear surface waves. Using our model we have analyzed filamentation and discussed bright and dark spatially localized structures of plasmons.Comment: http://link.aps.org/doi/10.1103/PhysRevA.81.03385

    New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region

    Get PDF
    We generalize a recent model-independent form factor parameterization derived from rigorous dispersion relations to include constraints from data in the timelike region. These constraints dictate the convergence properties of the parameterization and appear as sum rules on the parameters. We further develop a new parameterization that takes into account finiteness and asymptotic conditions on the form factor, and use it to fit to the elastic \pi electromagnetic form factor. We find that the existing world sample of timelike data gives only loose bounds on the form factor in the spacelike region, but explain how the acquisition of additional timelike data or fits to other form factors are expected to give much better results. The same parameterization is seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure

    Complex light: Dynamic phase transitions of a light beam in a nonlinear non-local disordered medium

    Full text link
    The dynamics of several light filaments (spatial optical solitons) propagating in an optically nonlinear and non-local random medium is investigated using the paradigms of the physics of complexity. Cluster formation is interpreted as a dynamic phase transition. A connection with the random matrices approach for explaining the vibrational spectra of an ensemble of solitons is pointed out. General arguments based on a Brownian dynamics model are validated by the numerical simulation of a stochastic partial differential equation system. The results are also relevant for Bose condensed gases and plasma physics.Comment: 11 pages, 20 figures. Small revisions, added a referenc

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    Ultranarrow resonance peaks in the transmission and reflection spectra of a photonic crystal cavity with Raman gain

    Full text link
    The Raman gain of a probe light in a three-state Λ\Lambda -scheme placed into a defect of a one-dimensional photonic crystal is studied theoretically. We show that there exists a pump intensity range, where the transmission and reflection spectra of the probe field exhibit \textit{simultaneously} occurring narrow peaks (resonances) whose position is determined by the Raman resonance. Transmission and reflection coefficients can be larger than unity at pump intensities of order tens of μ\muW/cm2^{2}. When the pump intensity is outside this region, the peak in the transmission spectrum turns into a narrow dip. The nature of narrow resonances is attributed to a drastic dispersion of the nonlinear refractive index in the vicinity of the Raman transition, which leads to a significant reduction of the group velocity of the probe wave.Comment: 9 pages, 3 figure
    • …
    corecore