4,016 research outputs found

    Monodromy transform and the integral equation method for solving the string gravity and supergravity equations in four and higher dimensions

    Full text link
    The monodromy transform and corresponding integral equation method described here give rise to a general systematic approach for solving integrable reductions of field equations for gravity coupled bosonic dynamics in string gravity and supergravity in four and higher dimensions. For different types of fields in space-times of D≥4D\ge 4 dimensions with d=D−2d=D-2 commuting isometries -- stationary fields with spatial symmetries, interacting waves or partially inhomogeneous cosmological models, the string gravity equations govern the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n≥0n\ge 0 of Abelian vector gauge fields (all depending only on two coordinates). The equivalent spectral problem constructed earlier allows to parameterize the infinite-dimensional space of local solutions of these equations by two pairs of \cal{arbitrary} coordinate-independent holomorphic d×dd\times d- and d×nd\times n- matrix functions u±(w),v±(w){\mathbf{u}_\pm(w), \mathbf{v}_\pm(w)} of a spectral parameter ww which constitute a complete set of monodromy data for normalized fundamental solution of this spectral problem. The "direct" and "inverse" problems of such monodromy transform --- calculating the monodromy data for any local solution and constructing the field configurations for any chosen monodromy data always admit unique solutions. We construct the linear singular integral equations which solve the inverse problem. For any \emph{rational} and \emph{analytically matched} (i.e. u+(w)≡u−(w)\mathbf{u}_+(w)\equiv\mathbf{u}_-(w) and v+(w)≡v−(w)\mathbf{v}_+(w)\equiv\mathbf{v}_-(w)) monodromy data the solution for string gravity equations can be found explicitly. Simple reductions of the space of monodromy data leads to the similar constructions for solving of other integrable symmetry reduced gravity models, e.g. 5D minimal supergravity or vacuum gravity in D≥4D\ge 4 dimensions.Comment: RevTex 7 pages, 1 figur

    Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    Full text link
    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of DD dimensions (D≥4D\ge 4) the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n≥0n\ge 0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an \emph{equivalent} (2d+n)×(2d+n)(2 d+n)\times(2 d+n) matrix spectral problem (d=D−2d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton and the second rank antisymmetric tensor fields. This new soliton generating procedure is available for constructing of various types of field configurations including stationary axisymmetric fields, interacting plane, cylindrical or some other types of waves and cosmological solutions.Comment: 4 pages; added new section on Belinski-Zakharov solitons and new expressions for calculation of the conformal factor; corrected typo

    Equilibrium configurations of two charged masses in General Relativity

    Full text link
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Integrability of generalized (matrix) Ernst equations in string theory

    Full text link
    The integrability structures of the matrix generalizations of the Ernst equation for Hermitian or complex symmetric d×dd\times d-matrix Ernst potentials are elucidated. These equations arise in the string theory as the equations of motion for a truncated bosonic parts of the low-energy effective action respectively for a dilaton and d×dd\times d - matrix of moduli fields or for a string gravity model with a scalar (dilaton) field, U(1) gauge vector field and an antisymmetric 3-form field, all depending on two space-time coordinates only. We construct the corresponding spectral problems based on the overdetermined 2d×2d2d\times 2d-linear systems with a spectral parameter and the universal (i.e. solution independent) structures of the canonical Jordan forms of their matrix coefficients. The additionally imposed conditions of existence for each of these systems of two matrix integrals with appropriate symmetries provide a specific (coset) structures of the related matrix variables. An equivalence of these spectral problems to the original field equations is proved and some approach for construction of multiparametric families of their solutions is envisaged.Comment: 15 pages, no figures, LaTeX; based on the talk given at the Workshop ``Nonlinear Physics: Theory and Experiment. III'', 24 June - 3 July 2004, Gallipoli (Lecce), Italy. Minor typos, language and references corrections. To be published in the proceedings in Theor. Math. Phy

    Infinite hierarchies of exact solutions of the Einstein and Einstein-Maxwell equations for interacting waves and inhomogeneous cosmologies

    Get PDF
    For space-times with two spacelike isometries, we present infinite hierarchies of exact solutions of the Einstein and Einstein--Maxwell equations as represented by their Ernst potentials. This hierarchy contains three arbitrary rational functions of an auxiliary complex parameter. They are constructed using the so called `monodromy transform' approach and our new method for the solution of the linear singular integral equation form of the reduced Einstein equations. The solutions presented, which describe inhomogeneous cosmological models or gravitational and electromagnetic waves and their interactions, include a number of important known solutions as particular cases.Comment: 7 pages, minor correction and reduction to conform with published versio

    Soliton Nature of Equilibrium State of Two Charged Masses in General Relativity

    Full text link
    New derivation of static equilibrium state for two charged masses in General Relativity is given in the framework of the Inverse Scattering Method as an alternative to our previous derivation of this solution by the Integral Equation Method. This shows that such solution is of solitonic character and represents the particular case of more general (12-parametric) stationary axisymmetric electrovacuum two-soliton solution for two rotating charged objects obtained by one of the authors in 1986. This result gives an additional support to our comprehension that the appropriate analytical continuations of solitonic solutions in the space of their parameters are always possible and that applicability of the Inverse Scattering Method in presence of electromagnetic field is not restricted only to the cases with naked singularities.Comment: 7 pages, RevTeX

    Superposition of fields of two Reissner - Nordstrom sources

    Full text link
    In this paper we present a 5-parametric family of static asymptotically flat solutions for the superposed gravitational and electromagnetic fields of two Reissner-Nordstr\"om sources with arbitrary parameters -- masses, charges and separating distance. A procedure for solving of the linear singular integral equation form of the electrovacuum Einstein - Maxwell equations for stationary axisymmetric fields is described in detail. The 4-parametric family of equilibrium configurations of two Reissner-Nordstr\"om sources (one of which should be a black hole and another one -- a naked singularity) presented in our recent paper \cite{Alekseev-Belinski:2007} arises after a restriction of the parameters of the 5-parametric solution presented here by the equilibrium condition which provides the absence in the solution of conical points on the symmetry axis between the sources.Comment: 24 pages, submitted to the Proceedings of the Eleventh Marcel Grossmann Meeting (Berlin, July 23 - 29, 2006

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction

    Superposition of fields of two rotating charged masses in General Relativity and existence of equilibrium configurations

    Full text link
    It is known that two Reissner-Nordstrom black holes or two overextreme Reissner-Nordstrom sources cannot be in physical equilibrium. In the static case such equilibrium is possible only if one of the sources is a black hole and another one is a naked singularity. We define the notion of physical equilibrium in general (stationary) case when both components of a binary system are rotating and show that such system containing a Kerr-Newman black hole and a Kerr-Newman naked singularity also can stay in physical equilibrium. The similar question about the system of two charged rotating black holes or two rotating overextreme charged sources still remains open.Comment: 20 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1211.396

    Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem

    Get PDF
    We consider the collisions of plane gravitational and electromagnetic waves with distinct wavefronts and of arbitrary polarizations in a Minkowski background. We first present a new, completely geometric formulation of the characteristic initial value problem for solutions in the wave interaction region for which initial data are those associated with the approaching waves. We present also a general approach to the solution of this problem which enables us in principle to construct solutions in terms of the specified initial data. This is achieved by re-formulating the nonlinear dynamical equations for waves in terms of an associated linear problem on the spectral plane. A system of linear integral ``evolution'' equations which solve this spectral problem for specified initial data is constructed. It is then demonstrated explicitly how various colliding plane wave space-times can be constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and Quantum Gravit
    • …
    corecore