20 research outputs found

    Characterization of E'delta and triplet point defects in oxygen deficient amorphous silicon dioxide

    Full text link
    We report an experimental study by electron paramagnetic resonance (EPR) of gamma ray irradiation induced point defects in oxygen deficient amorphous SiO2 materials. We have found that three intrinsic (E'gamma, E'delta and triplet) and one extrinsic ([AlO4]0) paramagnetic centers are induced. All the paramagnetic defects but E'gamma center are found to reach a concentration limit value for doses above 10^3 kGy, suggesting a generation process from precursors. Isochronal thermal treatments of a sample irradiated at 10^3 kGy have shown that for T>500 K the concentrations of E'gamma and E'delta centers increase concomitantly to the decrease of [AlO4]0. This occurrence speaks for an hole transfer process from [AlO4]0 centers to diamagnetic precursors of E' centers proving the positive charge state of the thermally induced E'gamma and E'delta centers and giving insight on the origin of E'gamma from an oxygen vacancy. A comparative study of the E'delta center and of the 10 mT doublet EPR signals on three distinct materials subjected to isochronal and isothermal treatments, has shown a quite general linear correlation between these two EPR signals. This result confirms the attribution of the 10 mT doublet to the hyperfine structure of the E'delta center, originating from the interaction of the unpaired electron with a nucleus of 29Si (I=1/2). Analogies between the microwave saturation properties of E'gamma and E'delta centers and between those of their hyperfine structures are found and suggest that the unpaired electron wave function involves similar Si sp3 hybrid orbitals; specifically, for the E'delta the unpaired electron is supposed to be delocalized over four such orbitals of four equivalent Si atoms.Comment: Approved for publication in Physical Review

    Off-Stoichiometry Spectroscopic Investigation of Pure Amorphous Silica and N-Doped Silica Thin Films

    No full text
    Cathodoluminescence spectroscopy and X-ray photoelectron spectroscopy were concurrently used to investigate the local physicochemical nature of the amorphous lattice in pure SiO2 and N-doped SiO2 thin films prepared by radiofrequency magnetron sputtering (the latter samples deposited under a set of different conditions of N2 partial pressure). The main aim of this investigation was twofold: (i) to extend our knowledge of the physical and chemical structure of SiO2 films and (ii) to explore our capacity of manipulating, fine tuning, and measuring their stoichiometry characteristics. The presence of nitrogen atoms in the amorphous host structure was confirmed to significantly affect the formation of oxygen-deficient centers, nonbridging oxygen hole centers, and other kinds of defect complexes. The main challenge here was to relate the variations in type and concentration of these peculiar defects to the processing conditions and to the amount of nitrogen incorporated in the SiO2 amorphous matrix. The evolution of both pure and doped systems was monitored with increasing the temperature of an annealing cycle following film deposition (1 h in air, at temperatures ranging between 50 and 1200 °C, with 50 °C step). Stoichiometry changes could thus be clarified and temperature thresholds found for the annihilation of N sites and for the formation of a pseudoequilibrium stoichiometric structure in silica glass
    corecore