278 research outputs found

    Controlled Release of Drugs FromHydrogel Based Matrices Systems: Experiments and Modeling

    Get PDF
    Hydrogels are materials largely used in the formulation of pharmaceuticals since, in principle, they could produce a release system of zero-order kinetics, which is of great therapeutic interest. In this paper, a model was proposed for the description of the main transport phenomena involved in the drug release process from hydrogel matrices (water diffusion, polymer swelling, drug diffusion and polymer dissolution); the model predictions are successfully compared with a large set of experimental data, obtained working with matrices systems based on HPMC (Hydroxy Propyl Methyl Cellulose). The proposed model was found able to reproduce main features of the observed phenomena, it can thus be adopted for prediction of the performances of drug release systems from hydrogel matrices

    Controlled Release of Drugs FromHydrogel Based Matrices Systems: Experiments and Modeling

    Get PDF
    Hydrogels are materials largely used in the formulation of pharmaceuticals since, in principle, they could produce a release system of zero-order kinetics, which is of great therapeutic interest. In this paper, a model was proposed for the description of the main transport phenomena involved in the drug release process from hydrogel matrices (water diffusion, polymer swelling, drug diffusion and polymer dissolution); the model predictions are successfully compared with a large set of experimental data, obtained working with matrices systems based on HPMC (Hydroxy Propyl Methyl Cellulose). The proposed model was found able to reproduce main features of the observed phenomena, it can thus be adopted for prediction of the performances of drug release systems from hydrogel matrices

    TV-Centric technologies to provide remote areas with two-way satellite broadband access

    Get PDF
    October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces

    MODELLING OF POWDER FLOW IN ROTATIONAL MOULDING

    Get PDF
    Rotational moulding is a widely used technological process to obtain hollow plastic articles, in which polymer powders melt within a rotating mould. The first step in modelling the melting process is to analyse the kinematics of the powder in the rotating system. To this goal, a series of experimental observations was performed on a rotating cylinder partially filled with a powder (Sand X, average size 460 microns) with known physical characteristics (such as angles of repose and angles of approach). A phenomenological model was then developed, based on the assumption that the powder behaves as a Bingham-plastic fluid, obtaining theoretical predictions which were in good agreement with the experimental measurements

    Ejection force of tubular injection moldings. Part II : a prediction model

    Get PDF
    The integrated knowledge of the injection molding process and the material changes induced by processing is essential to guarantee the quality of technical parts. In the case of parts with deep cavities, quite often the ejection phase of the molding cycle is critical. Thus, in the mold design stage, the aspects associated with the ejection system will require special consideration. In particular, the prediction of the ejection force will contribute to optimizing the mold design and to guarantee the integrity of the moldings. In this work, a simulation algorithm based on a thermomechanical model is described and their predictions are compared with experimental data obtained from a fully-instrumented mold (pressure, temperature, and force). Three common thermoplastics polymers were used for the tubular moldings: a semicrystalline polypropylene and two amorphous thermoplastics: polystyrene and polycarbonate. The thermomechanical model is based on the assumption of the polymer behavior changing from purely viscous to purely elastic below a transition point. This point corresponds to solidification determined by temperature in the case of amorphous materials and by critical crystallinity for semicrystalline polymers. The model results for the ejection force closely agree with the experimental data for the three materials used

    Analysis and modeling of swelling and erosion behavior for pure HPMC tablet

    Get PDF
    This work is focused on the transport phenomena which take place during immersion in water of pure hydroxypropylmethylcellulose tablets. The water uptake, the swelling and the erosion during immersion were investigated in drug-free systems, as a preliminary task before to undertake the study of drug-loaded ones. The tablets, obtained by powder compression, were confined between glass slabs to allow water uptake only by lateral surface and then immersed in distilled water at 37 °C, with simultaneous video-recording. By image analysis the normalized light intensity profiles were obtained and taken as a measure of the water mass fraction. The time evolutions of the total tablet mass, of the water mass and of the erosion radius were measured, too. Thus a novel method to measure polymer and water masses during hydration was pointed out. Then, a model consisting in the transient mass balance, accounting for water diffusion, diffusivity change due to hydration, swelling and erosion, was found able to reproduce all experimental data. Even if the model was already used in literature, the novelty of our approach is to compare model predictions with a complete set of experimental data, confirming that the main phenomena were correctly identified and described

    Pediatric Inflammatory Multisystem Syndrome: Statement by the Pediatric Section of the European Society for Emergency Medicine and European Academy of Pediatrics

    Get PDF
    A rise in cases with a new hyperinflammatory disease in children has been reported in Europe and in the Unites States of America, named the Pediatric Inflammatory Multisystem Syndrome—temporally associated with SARS-CoV-2 (PIMS-TS). There appears to be a wide spectrum of signs and symptoms with varying degrees of severity, including a toxic shock like presentation with hypovolaemia and shock, and a Kawasaki-like presentation with involvement of the coronary arteries. Most of these children have evidence of a previous infection with SARS-CoV-2, or a history of significant exposure, but not all. Limited data exist on the incidence of PIMS-TS, but it remains a rare condition. Early recognition and escalation of care is important to prevent the development of serious sequelae, such as coronary artery aneurysms. Clinicians assessing febrile children in primary and secondary care should include PIMS-TS in their differential diagnoses. In children fulfilling the case definition, additional investigations should be undertaken to look for evidence of inflammation and multiorgan involvement. Suspected cases should be discussed with experts in pediatric infectious diseases at an early stage, and advice should be sought from critical care in more severe cases early. There is limited consensus on treatment; but most children have been treated with immunoglobulins or steroids, and with early consideration of biologicals such anti-TNF and anti-IL1 agents. Treatment should ideally be within the context of controlled treatment trials. Clinicians are encouraged to document and share their cases using research registries
    • 

    corecore