3,682 research outputs found

    Cone nonnegativity of Moore–Penrose inverses of unbounded Gram operators

    Get PDF
    In this article, necessary and sufficient conditions for the cone nonnegativity of Moore–Penrose inverses of unbounded Gram operators are derived. These conditions include statements on acuteness of certain closed convex cones in infinite-dimensional real Hilbert spaces

    Theoretical analysis of perching and hovering maneuvers

    Get PDF
    Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications

    Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows

    Get PDF
    We investigate the effect of a hybrid electron population, consisting of both thermal and non-thermal particles, on the synchrotron spectrum, image size, and image shape of a hot accretion flow onto a supermassive black hole. We find two universal features in the emitted synchrotron spectrum: (i) a prominent shoulder at low (< 10^11 Hz) frequencies that is weakly dependent on the shape of the electron energy distribution, and (ii) an extended tail of emission at high (> 10^13 Hz) frequencies whose spectral slope depends on the slope of the power-law energy distribution of the electrons. In the low-frequency shoulder, the luminosity can be up to two orders of magnitude greater than with a purely thermal plasma even if only a small fraction (< 1%) of the steady-state electron energy is in the non-thermal electrons. We apply the hybrid model to the Galactic center source, Sgr A*. The observed radio and IR spectra imply that at most 1% of the steady-state electron energy is present in a power-law tail in this source. This corresponds to no more than 10% of the electron energy injected into the non-thermal electrons and hence 90% into the thermal electrons. We show that such a hybrid distribution can be sustained in the flow because thermalization via Coulomb collisions and synchrotron self-absorption are both inefficient. The presence of non-thermal electrons enlarges the size of the radio image at low frequencies and alters the frequency dependence of the brightness temperature. A purely thermal electron distributions produces a sharp-edged image while a hybrid distribution causes strong limb brightening. These effects can be seen up to frequencies ~10^11 Hz and are accessible to radio interferometers.Comment: 33 pages with figures, to appear in the Astrophysical Journa

    TURBULENCE IN MOLECULAR CLOUDS

    Get PDF
    We generate random Gaussian turbulent velocity fields with a Kolmogorov spectrum and use these to obtain synthetic line-of-sight velocity profiles. The profiles are found to be similar to line profiles observed in molecular clouds. We suggest methods for analysing measured line profiles to test whether they might arise from Gaussian Kolmogorov turbulence.Comment: accepted in ApJ, compressed postscript, figures not included. Complete preprint available at http://ucowww.ucsc.edu/~dubinski/home.html or by request to [email protected]

    Synthesis and Structural Analysis of Nanocrystalline MnFe2O4

    Get PDF
    AbstractNanocrystalline form of manganese ferrite (MnFe2O4) has been synthesized by simple sol-gel auto combustion method using citric acid as chelating agent. The obtained nanocrystalline powders of manganese ferrite were subjected to structural and magnetic measurements. Temperature dependent magnetization was also carried out for the single phase nanocrystalline manganese ferrite and the results have been discussed in detail

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    PCA-RECT: An Energy-efficient Object Detection Approach for Event Cameras

    Full text link
    We present the first purely event-based, energy-efficient approach for object detection and categorization using an event camera. Compared to traditional frame-based cameras, choosing event cameras results in high temporal resolution (order of microseconds), low power consumption (few hundred mW) and wide dynamic range (120 dB) as attractive properties. However, event-based object recognition systems are far behind their frame-based counterparts in terms of accuracy. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional dictionary representation when hardware resources are limited to implement dimensionality reduction. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance and relevance to state-of-the-art algorithms. Additionally, we verified the object detection method and real-time FPGA performance in lab settings under non-controlled illumination conditions with limited training data and ground truth annotations.Comment: Accepted in ACCV 2018 Workshops, to appea
    corecore