424 research outputs found
Ab Initio Structural Studies of Cyclobutylmethyl Cations: Effect of Fluoroalkyl Groups on the Relative Stability of the Carbocations
Ab initio calculations at MP2/cc-pVTZ level show that the trifluoromethyl group has a strong destabilizing effect on the nonclassical, σ-bridged cyclobutylmethyl cations. The GIAO-MP2 derived 13C NMR chemical shifts indicate substantial charge delocalization from the neighboring cyclobutyl ring for carbocations with an α-fluorolkyl group as compared to the 1-cyclobutylethyl cation, and this enhanced charge delocalization in case of the α-(trifluoromethyl)cyclobutylmethyl cation would lead to the ring-opening rearrangement to form the relatively more stable nonclassical primary cyclobutylmethyl cation, in which the carbocation center is farthest from the strongly electron-withdrawing trifluoromethyl group
Modified Weaver-Dunn procedure, a novel approach to type-3 acromioclavicular joint dislocation
Even though a generally accepted opinion is present about conservative management for type 1 and type 2 acromioclavicular dislocation and surgical management for type 4 to type 6 dislocations, different opinions come under play for conservative versus surgical management in cases with acute type 3 acromioclavicular joint dislocation. We came across 20 cases of type 3 AC joint dislocation with a varied age profile (range 18 to 50 years, mean 34.4±6.5 years). Patients usually complain of pain and swelling and difficulty in moving shoulder joint. The diagnosis can be confirmed by radiographs which shows widening of AC joint >2-4 mm and coracoclavicular distance >5 mm and superior displacement of distal clavicle. In our series, we have treated them with modified Weaver Dunn technique. Immobilized arm in arm pouch for 3 weeks and follow up was done to assess functional outcome. In this study we present the outcome and related complications with modified Weaver Dunn technique for type 3 acromioclavicular joint dislocation
Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents
A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure
Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems
The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts)
Fluoroester Co-Solvents for Low-Temperature Li+ Cells
Electrolytes comprising LiPF6 dissolved in alkyl carbonate/fluoroester mixtures have been found to afford improved low-temperature performance and greater high-temperature resilience in rechargeable lithium-ion electrochemical cells. These and other electrolytes comprising lithium salts dissolved mixtures of esters have been studied in continuing research directed toward extending the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. The purpose of the present focus on high-temperature resilience in addition to low-temperature performance is to address issues posed by the flammability of the esters and, at temperatures near the upper end (about 55 C) of their intended operating temperature range, by their high chemical reactivity. As used here, high-temperature resilience signifies, loosely, a desired combination of low flammability of an electrolyte mixture and the ability of a cell that contains the mixture to sustain a relatively small loss of reversible charge/discharge capacity during storage in the fully charged condition at high temperature. The selection of fluoroesters for study as candidate electrolyte solvent components to increase high-temperature resilience was prompted in part by the observation that like other halogenated compounds, fluoroesters have low flammability. The fluoroesters investigated in this study include trifluoroethyl butyrate (TFEB), ethyl trifluoroacetate (ETFA), trifluoroethyl acetate (TFEA), and methyl pentafluoropropionate (MPFP). Solvent mixtures were prepared by mixing these fluoroesters with two other esters: ethylene carbonate (EC) and ethyl methyl carbonate (EMC)
Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive
A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and the discharge rate capability. The use of fluorinated carbonates, much in the same manner as the incorporation of fluorinated ester-based solvents, was employed to reduce the inherent flammability of mixtures. Thus, electrolyte formulations that embody both approaches are anticipated to have much lower flammability, resulting in enhanced safety
Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives
Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this study displayed good performance over a wide temperature range, good cycle life characteristics, and are expected to have improved safety characteristics, such as low flammability. Of the electrolytes studied, 1.0 M LiPF6 in EC+EMC+DEP (20:75:5 v/v %) and 1.0 M LiPF6 in EC+EMC+DPP (20:75:5 v/v %) displayed the best operation at low temperatures, whereas the electrolyte containing triphenylphosphite displayed the best cycle life performance compared to the baseline solution. It is anticipated that further improvements can be made to the life characteristics with the incorporation of a SET promoters (such as VC, vinylene carbonate), which will likely inhibit the decomposition of the flame-retardant additives
Lithium-Ion Electrolytes with Fluoroester Co-Solvents
An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed
Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics
The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt
- …