386 research outputs found

    Smooth bumps, a Borel theorem and partitions of smooth functions on p.c.f. fractals

    Full text link
    We provide two methods for constructing smooth bump functions and for smoothly cutting off smooth functions on fractals, one using a probabilistic approach and sub-Gaussian estimates for the heat operator, and the other using the analytic theory for p.c.f. fractals and a fixed point argument. The heat semigroup (probabilistic) method is applicable to a more general class of metric measure spaces with Laplacian, including certain infinitely ramified fractals, however the cut off technique involves some loss in smoothness. From the analytic approach we establish a Borel theorem for p.c.f. fractals, showing that to any prescribed jet at a junction point there is a smooth function with that jet. As a consequence we prove that on p.c.f. fractals smooth functions may be cut off with no loss of smoothness, and thus can be smoothly decomposed subordinate to an open cover. The latter result provides a replacement for classical partition of unity arguments in the p.c.f. fractal setting.Comment: 26 pages. May differ slightly from published (refereed) versio

    Spectral analysis on infinite Sierpinski fractafolds

    Full text link
    A fractafold, a space that is locally modeled on a specified fractal, is the fractal equivalent of a manifold. For compact fractafolds based on the Sierpinski gasket, it was shown by the first author how to compute the discrete spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian. A similar problem was solved by the second author for the case of infinite blowups of a Sierpinski gasket, where spectrum is pure point of infinite multiplicity. Both works used the method of spectral decimations to obtain explicit description of the eigenvalues and eigenfunctions. In this paper we combine the ideas from these earlier works to obtain a description of the spectral resolution of the Laplacian for noncompact fractafolds. Our main abstract results enable us to obtain a completely explicit description of the spectral resolution of the fractafold Laplacian. For some specific examples we turn the spectral resolution into a "Plancherel formula". We also present such a formula for the graph Laplacian on the 3-regular tree, which appears to be a new result of independent interest. In the end we discuss periodic fractafolds and fractal fields

    A Non-Riemannian Metric on Space-Time Emergent From Scalar Quantum Field Theory

    Full text link
    We show that the two-point function \sigma(x,x')=\sqrt{} of a scalar quantum field theory is a metric (i.e., a symmetric positive function satisfying the triangle inequality) on space-time (with imaginary time). It is very different from the Euclidean metric |x-x'| at large distances, yet agrees with it at short distances. For example, space-time has finite diameter which is not universal. The Lipschitz equivalence class of the metric is independent of the cutoff. \sigma(x,x') is not the length of the geodesic in any Riemannian metric. Nevertheless, it is possible to embed space-time in a higher dimensional space so that \sigma(x,x') is the length of the geodesic in the ambient space. \sigma(x,x') should be useful in constructing the continuum limit of quantum field theory with fundamental scalar particles
    • …
    corecore