155 research outputs found

    Continuous and Discontinuous Quantum Phase Transitions in a Model Two-Dimensional Magnet

    Get PDF
    The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated, gapped excitations and collective, ordered ground states. We compress the model Shastry-Sutherland material, SrCu2(BO3)2, in a diamond anvil cell at cryogenic temperatures to continuously tune the coupling energies and induce changes in state. High-resolution x-ray measurements exploit what emerges as a remarkably strong spin-lattice coupling to both monitor the magnetic behavior and the absence or presence of structural discontinuities. In the low-pressure spin-singlet regime, the onset of magnetism results in an expansion of the lattice with decreasing temperature, which permits a determination of the pressure dependent energy gap and the almost isotropic spin-lattice coupling energies. The singlet-triplet gap energy is suppressed continuously with increasing pressure, vanishing completely by 2 GPa. This continuous quantum phase transition is followed by a structural distortion at higher pressure.Comment: 16 pages, 4 figures. Accepted for publication in PNA

    Orbital ordering transition in Ca2_2RuO4_4 observed with resonant x-ray diffraction

    Full text link
    Resonant x-ray diffraction performed at the LII\rm L_{II} and LIII\rm L_{III} absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca2_2RuO4_4 single crystals. A large resonant enhancement due to electric dipole 2p→4d2p\to 4d transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at TN=110\rm T_{N}=110 K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru t2gt_{2g} electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca2_2RuO4_4.Comment: to appear in PR

    Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet

    Get PDF
    The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.Comment: 11 pages, 9 figures (8 in color

    Iterated Moire Maps and Braiding of Chiral Polymer Crystals

    Full text link
    In the hexagonal columnar phase of chiral polymers a bias towards cholesteric twist competes with braiding along an average direction. When the chirality is strong, screw dislocations proliferate, leading to either a tilt grain boundary phase or a new "moire state" with twisted bond order. Polymer trajectories in the plane perpendicular to their average direction are described by iterated moire maps of remarkable complexity.Comment: 10 pages (plain tex) 3 figures uufiled and appende

    Magnetic Structure Of Sm2 Ir In8 Determined By X-ray Resonant Magnetic Scattering

    Get PDF
    The magnetic structure of the intermetallic antiferromagnet Sm2 Ir In8 was determined using x-ray resonant magnetic scattering. Below TN =14.2 K, Sm2 Ir In8 has a commensurate antiferromagnetic structure with a propagation vector η = (12,0,0). The Sm magnetic moments lie in the ab plane and are rotated roughly 18° away from the a axis. The magnetic structure of this compound was obtained by measuring the strong dipolar resonant peak whose enhancement was of over 2 orders of magnitude at the L2 edge. At the L3 edge, both quadrupolar and dipolar features were observed in the energy line shape. The magnetic structure and properties of Sm2 Ir In8 are found to be consistent with the general trend already seen for the Nd-, Tb-, and the Ce-based compounds from the Rm Mn In3m+2n family (R=rare earth; M=Rh or Ir; m=1,2; n=0,1), where the crystalline electrical field effects determine the direction of magnetic moments and the TN evolution in the series. The measured Néel temperature for Sm2 Ir In8 is slightly suppressed when compared to the TN of the parent cubic compound Sm In3. © 2007 The American Physical Society.7610Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Europhys. Lett., 354-359, p. 4986. , EULEEJ 0295-5075Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Thompson, J.D., (2001) J. Magn. Magn. Mater., 226-230, p. 5. , JMMMDC 0304-8853Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2001) Phys. Rev. B, 63, p. 054426. , PRBMDO 0163-1829 10.1103/PhysRevB.63.054426Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., (2000) Phys. Rev. B, 62, p. 12266. , PRBMDO 0163-1829 10.1103/PhysRevB.62.12266Lora-Serrano, R., Giles, C., Granado, E., Garcia, D.J., Miranda, E., Agüero, O., Mendonça Ferreira, L., Pagliuso, P.G., (2006) Phys. Rev. B, 74, p. 214404. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214404Chen, G., Ohara, S., Hedo, M., Uwatoko, Y., Saito, K., Sorai, M., Sakamoto, I., (2002) J. Phys. Soc. Jpn., 71, p. 2836. , JUPSAU 0031-9015 10.1143/JPSJ.71.2836Moshopoulou, E.G., Fisk, Z., Sarrao, J.L., Thompson, J.D., (2001) J. Solid State Chem., 158, p. 25. , JSSCBI 0022-4596 10.1006/jssc.2000.9052Moshopoulou, E.G., Ibberson, R.M., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2006) Acta Crystallogr., Sect. B: Struct. Sci., 62, p. 173. , ASBSDK 0108-7681Buschow, K.H.J., De Wijn, H.W., Van Diepen, A.M., (1969) J. Chem. Phys., 50, p. 137. , JCPSA6 0021-9606 10.1063/1.1670771Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Pagliuso, P.G., Movshovich, R., Bianchi, A.D., Nicklas, M., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2002) Physica B, 312-313, p. 129. , PHYBE3 0921-4526Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Sidorov, V.A., Nicklas, M., Pagliuso, P.G., Sarrao, J.L., Bang, Y., Balatsky, A.V., Thompson, J.D., (2002) Phys. Rev. Lett., 89, p. 157004. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.157004Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Paglione, J., Tanatar, M.A., Hawthorn, D.G., Boaknin, E., Hill, R.W., Ronning, F., Sutherland, M., Canfield, P.C., (2003) Phys. Rev. Lett., 91, p. 246405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.246405Kumar, R.S., Cornelius, A.L., Sarrao, J.L., (2004) Phys. Rev. B, 70, p. 214526. , PRBMDO 0163-1829 10.1103/PhysRevB.70.214526Oeschler, N., Gegenwart, P., Lang, M., Movshovich, R., Sarrao, J.L., Thompson, J.D., Steglich, F., (2003) Phys. Rev. Lett., 91, p. 076402. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.076402Christianson, A.D., (2004) Phys. Rev. B, 70, p. 134505. , PRBMDO 0163-1829 10.1103/PhysRevB.70.134505Harrison, N., (2004) Phys. Rev. Lett., 93, p. 186405. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.186405Raj, S., (2005) Phys. Rev. B, 71, p. 224516. , PRBMDO 0163-1829 10.1103/PhysRevB.71.224516Hall, D., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., Alver, U., Goodrich, R.G., Ebihara, T., (2001) Phys. Rev. B, 64, p. 212508. , PRBMDO 0163-1829 10.1103/PhysRevB.64.212508Hall, D., (2001) Phys. Rev. B, 64, p. 064506. , PRBMDO 0163-1829 10.1103/PhysRevB.64.064506Costa-Quintana, J., López-Aguilar, F., (2003) Phys. Rev. B, 67, p. 132507. , PRBMDO 0163-1829 10.1103/PhysRevB.67.132507Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Lander, G.H., (2002) Nature (London), 420, p. 297. , NATUAS 0028-0836 10.1038/nature01212Bauer, E.D., (2004) Phys. Rev. Lett., 93, p. 147005. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.147005Christianson, A.D., (2005) Phys. Rev. Lett., 95, p. 217002. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.217002Lora-Serrano, R., Mendonça Ferreira, L., Garcia, D.J., Miranda, E., Giles, C., Duque, J.G.S., Granado, E., Pagliuso, P.G., (2006) Physica B, 384, p. 326. , PHYBE3 0921-4526 10.1016/j.physb.2006.06.035Hieu, N.V., (2006) J. Phys. Soc. Jpn., 75, p. 074708. , JUPSAU 0031-9015Malinowski, A., Hundley, M.F., Moreno, N.O., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., (2003) Phys. Rev. B, 68, p. 184419. , PRBMDO 0163-1829 10.1103/PhysRevB.68.184419Correa, V.F., Tung, L., Hollen, S.M., Pagliuso, P.G., Moreno, N.O., Lashley, J.C., Sarrao, J.L., Lacerda, A.H., (2004) Phys. Rev. B, 69, p. 174424. , PRBMDO 0163-1829 10.1103/PhysRevB.69.174424Granado, E., Pagliuso, P.G., Giles, C., Lora-Serrano, R., Yokaichiya, F., Sarrao, J.L., (2004) Phys. Rev. B, 69, p. 144411. , PRBMDO 0163-1829 10.1103/PhysRevB.69.144411Pagliuso, P.G., (2006) J. Appl. Phys., 99, pp. 08P703. , JAPIAU 0021-8979 10.1063/1.2176109Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2001) Phys. Rev. B, 63, p. 219901. , PRBMDO 0163-1829 10.1103/PhysRevB.63.219901Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., (2001) Phys. Rev. B, 64, p. 020401. , PRBMDO 0163-1829 10.1103/PhysRevB.64.020401Chang, S., Pagliuso, P.G., Bao, W., Gardner, J.S., Swainson, I.P., Sarrao, J.L., Nakotte, H., (2002) Phys. Rev. B, 66, p. 132417. , PRBMDO 0163-1829 10.1103/PhysRevB.66.132417Granado, E., Uchoa, B., Malachias, A., Lora-Serrano, R., Pagliuso, P.G., Westfahl Jr., H., (2006) Phys. Rev. B, 74, p. 214428. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214428Kasaya, M., Liu, B., Sera, M., Kasuya, T., Endoh, D., Goto, T., Fujimura, F., (1985) J. Magn. Magn. Mater., 52, p. 289. , JMMMDC 0304-8853 10.1016/0304-8853(85)90282-3Endoh, D., Goto, T., Tamaki, A., Liu, B., Kasaya, M., Fujimura, T., Kasuya, T., (1989) J. Phys. Soc. Jpn., 58, p. 940. , JUPSAU 0031-9015Kletowski, Z., (1998) J. Magn. Magn. Mater., 186, p. 7. , JMMMDC 0304-8853Stunault, A., Dumesnil, K., Dufour, C., Vettier, C., Bernhoeft, N., (2002) Phys. Rev. B, 65, p. 064436. , PRBMDO 0163-1829 10.1103/PhysRevB.65.064436Fisk, Z., Remeika, J.P., (1989) Handbook on the Physics and Chemistry of Rare Earths, 12, p. 53. , edited by J. K. A. Geschneider and E. L. Eyring (Elsevier, Amsterdam/ North-Holland, AmsterdamPaolasini, L., (2007) J. Synchrotron Radiat., 14, p. 301. , JSYRES 0909-0495Hill, J.P., McMorrow, D.F., (1996) Acta Crystallogr., Sect. A: Found. Crystallogr., 52, p. 236. , ACACEQ 0108-7673 10.1107/S0108767395012670Zheludev, A., Hill, J.P., Buttrey, D.J., (1996) Phys. Rev. B, 54, p. 7216. , PRBMDO 0163-1829 10.1103/PhysRevB.54.7216Hill, J.P., Vigliante, A., Gibbs, D., Peng, J.L., Greene, R.L., (1995) Phys. Rev. B, 52, p. 6575. , PRBMDO 0163-1829 10.1103/PhysRevB.52.6575Detlefs, C., Islam, A.H.M.Z., Goldman, A.I., Stassis, C., Canfield, P.C., Hill, J.P., Gibbs, D., (1997) Phys. Rev. B, 55, p. 680. , PRBMDO 0163-1829 10.1103/PhysRevB.55.R680Hannon, J.P., Trammell, G.T., Blume, M., Gibbs, D., (1988) Phys. Rev. Lett., 61, p. 1245. , PRLTAO 0031-9007 10.1103/PhysRevLett.61.1245Blume, M., Gibbs, D., (1988) Phys. Rev. B, 37, p. 1779. , PRBMDO 0163-1829 10.1103/PhysRevB.37.1779Kubo, K., Hotta, T., (2006) J. Phys. Soc. Jpn., 75, p. 083702. , JUPSAU 0031-9015 10.1143/JPSJ.75.083702Tsuchida, T., Wallace, W.E., (1965) J. Chem. Phys., 43, p. 3811. , JCPSA6 0021-9606 10.1063/1.169656

    A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor

    Full text link
    Using high-energy diffraction we show that a 4-unit-cell superstructure, q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in optimally doped YBCO. A complex set of anisotropic atomic displacements on neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively, correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our observations are consistent with the presence of Ortho-IV nanodomains containing these displacements.Comment: Corrected typo in abstrac
    • …
    corecore