48 research outputs found

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase.

    Get PDF
    To understand the mechanism of Axl signaling, we have initiated studies to delineate downstream components in interleukin-3-dependent 32D cells by using a chimeric receptor containing the recombinant epidermal growth factor (EGF) receptor extracellular and transmembrane domains and the Axl kinase domain (EAK [for EGF receptor-Axl kinase]). We have previously shown that upon exogenous EGF stimulation, 32D-EAK cells are capable of proliferation in the absence of interleukin-3. With this system, we determined that EAK-induced cell survival and mitogenesis are dependent upon the Ras/extracellular-signal-regulated protein kinase (ERK) cascade. Although the phosphatidylinositol-3 kinase pathway is activated upon EAK signaling, it appears to be dispensable for the biological actions of the Axl kinase. Furthermore, we demonstrated that different threshold levels of Ras/ERK activation are needed to induce a block to apoptosis or proliferation in 32D cells. Recently, we have identified an Axl ligand, GAS6. Surprisingly, GAS6-stimulated 32D-Axl cells exhibited no blockage to apoptosis or mitogenic response which is correlated with the absence of Ras/ERK activation. Taken together, these data suggest that different extracellular domains dramatically alter the intracellular response of the Axl kinase. Furthermore, our data suggest that the GAS6-Axl interaction does not induce mitogenesis and that its exact role remains to be determined
    corecore