63 research outputs found

    On the complexity of color-avoiding site and bond percolation

    Full text link
    The mathematical analysis of robustness and error-tolerance of complex networks has been in the center of research interest. On the other hand, little work has been done when the attack-tolerance of the vertices or edges are not independent but certain classes of vertices or edges share a mutual vulnerability. In this study, we consider a graph and we assign colors to the vertices or edges, where the color-classes correspond to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that remain connected to each other by paths providing any type of error (i.e. erasing any vertices or edges of the given color). This is also known as color-avoiding percolation. In this paper, we study various possible modeling approaches of shared vulnerabilities, we analyze the computational complexity of finding the robustly (color-avoiding) connected components. We find that the presented approaches differ significantly regarding their complexity.Comment: 14 page

    HbA(1c) levels in non-diabetic older adults No J-shaped associations with primary cardiovascular events, cardiovascular and all-cause mortality after adjustment for confounders in a meta-analysis of individual participant data from six cohort studies

    Get PDF
    Background To determine the shape of the associations of HbA1c with mortality and cardiovascular outcomes in non-diabetic individuals and explore potential explanations. Methods The associations of HbA1c with all-cause mortality, cardiovascular mortality and primary cardiovascular events (myocardial infarction or stroke) were assessed in non-diabetic subjects ≥50 years from six population-based cohort studies from Europe and the USA and meta-analyzed. Very low, low, intermediate and increased HbA1c were defined as <5.0, 5.0 to <5.5, 5.5 to <6.0 and 6.0 to <6.5 % (equals <31, 31 to <37, 37 to <42 and 42 to <48 mmol/mol), respectively, and low HbA1c was used as reference in Cox proportional hazards models. Results Overall, 6,769 of 28,681 study participants died during a mean follow-up of 10.7 years, of whom 2,648 died of cardiovascular disease. Furthermore, 2,493 experienced a primary cardiovascular event. A linear association with primary cardiovascular events was observed. Adjustment for cardiovascular risk factors explained about 50 % of the excess risk and attenuated hazard ratios (95 % confidence interval) for increased HbA1c to 1.14 (1.03–1.27), 1.17 (1.00–1.37) and 1.19 (1.04–1.37) for all-cause mortality, cardiovascular mortality and cardiovascular events, respectively. The six cohorts yielded inconsistent results for the association of very low HbA1c levels with the mortality outcomes and the pooled effect estimates were not statistically significant. In one cohort with a pronounced J-shaped association of HbA1c levels with all-cause and cardiovascular mortality (NHANES), the following confounders of the association of very low HbA1c levels with mortality outcomes were identified: race/ethnicity; alcohol consumption; BMI; as well as biomarkers of iron deficiency anemia and liver function. Associations for very low HbA1c levels lost statistical significance in this cohort after adjusting for these confounders. Conclusions A linear association of HbA1c levels with primary cardiovascular events was observed. For cardiovascular and all-cause mortality, the observed small effect sizes at both the lower and upper end of HbA1c distribution do not support the notion of a J-shaped association of HbA1c levels because a certain degree of residual confounding needs to be considered in the interpretation of the results

    Node-weighted measures for complex networks with spatially embedded, sampled, or differently sized nodes

    Full text link
    When network and graph theory are used in the study of complex systems, a typically finite set of nodes of the network under consideration is frequently either explicitly or implicitly considered representative of a much larger finite or infinite region or set of objects of interest. The selection procedure, e.g., formation of a subset or some kind of discretization or aggregation, typically results in individual nodes of the studied network representing quite differently sized parts of the domain of interest. This heterogeneity may induce substantial bias and artifacts in derived network statistics. To avoid this bias, we propose an axiomatic scheme based on the idea of node splitting invariance to derive consistently weighted variants of various commonly used statistical network measures. The practical relevance and applicability of our approach is demonstrated for a number of example networks from different fields of research, and is shown to be of fundamental importance in particular in the study of spatially embedded functional networks derived from time series as studied in, e.g., neuroscience and climatology.Comment: 21 pages, 13 figure

    Spectra of complex networks

    Full text link
    We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues ρ(λ)\rho(\lambda) at large λ|\lambda| is related to the behavior of the vertex degree distribution P(k)P(k) at large kk. In particular, as P(k)kγP(k) \sim k^{-\gamma}, ρ(λ)λ12γ\rho(\lambda) \sim |\lambda|^{1-2\gamma}. We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyse spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally tree-like random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.Comment: 10 pages, 4 figure

    Extending RSVP-TE to support Guarantee of Service in MPLS

    No full text

    Evolution versus Intelligent Design: Comparing the Topology of Protein-Protein Interaction Networks to the Internet

    No full text
    Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the primary challenges for the system biology community. In this study, we attempt to understand better the topological structure of PPI networks by comparing them against man-made communication networks, and more specifically, the Internet. Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueshness of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet topology is a decentralized optimization process geared towards efficient node communication. 1

    6 months results

    No full text

    Omnify: Investigating the Visibility and Effectiveness of Copyright Monitors

    No full text
    The arms race between copyright agencies and P2P users is an ongoing and evolving struggle. On the one hand, content providers are using several techniques to stealthily find unauthorized distribution of copyrighted work in order to deal with the problem of Internet piracy. On the other hand, P2P users are relying increasingly on blacklists and anonymization methods in order to avoid detection. In this work, we propose a number of techniques to reveal copyright monitors’ current approaches and evaluate their effectiveness. We apply these techniques on data we collected from more than 2.75 million BitTorrent swarms containing 71 million IP addresses. We provide strong evidence that certain nodes are indeed copyright monitors, show that monitoring is a world-wide phenomenon, and devise a methodology for generating blacklists for paranoid and conservative P2P users
    corecore