255 research outputs found

    Yoga for generalized anxiety disorder: design of a randomized controlled clinical trial.

    Full text link
    Generalized anxiety disorder (GAD) is a common disorder associated with significant distress and interference. Although cognitive behavioral therapy (CBT) has been shown to be the most effective form of psychotherapy, few patients receive or have access to this intervention. Yoga therapy offers another promising, yet under-researched, intervention that is gaining increasing popularity in the general public, as an anxiety reduction intervention. The purpose of this innovative clinical trial protocol is to investigate the efficacy of a Kundalini Yoga intervention, relative to CBT and a control condition. Kundalini yoga and CBT are compared with each other in a noninferiority test and both treatments are compared to stress education training, an attention control intervention, in superiority tests. The sample will consist of 230 individuals with a primary DSM-5 diagnosis of GAD. This randomized controlled trial will compare yoga (N=95) to both CBT for GAD (N=95) and stress education (N=40), a commonly used control condition. All three treatments will be administered by two instructors in a group format over 12 weekly sessions with four to six patients per group. Groups will be randomized using permuted block randomization, which will be stratified by site. Treatment outcome will be evaluated bi-weekly and at 6month follow-up. Furthermore, potential mediators of treatment outcome will be investigated. Given the individual and economic burden associated with GAD, identifying accessible alternative behavioral treatments will have substantive public health implications.R01 AT007257 - NCCIH NIH HHS; R01 AT007258 - NCCIH NIH HH

    Performance of Nickel-Cadmium Batteries on the GOES I-K Series of Weather Satellites

    Get PDF
    The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of 5 spacecraft (originally named GOES I-M), three of which are in orbit and two more in development. Each of five spacecraft carry two Nickel-Cadmium batteries, with batteries designed and manufactured by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the 3 launched spacecraft (now GOES 8, 9, and 10) in orbit

    Performance of Nickel-Cadmium Batteries on the GOES-1 Series of Weather Satellites

    Get PDF
    This is an errata from an original paper published in the 1997 NASA Aerospace Battery workshop proceedings. A minor change was made to the second equation on page 98 and table 4 was revised during the final preparation of the paper. These changes were inadvertently left out of the final proceedings. These pages are reproduced in their entirety

    The coordination and distribution of B in foraminiferal calcite

    Get PDF
    The isotopic ratio and concentration of B in foraminiferal calcite appear to reflect the pH and bicarbonate concentration of seawater. The use of B as a chemical proxy tracer has the potential to transform our understanding of the global carbon cycle, and ocean acidification processes. However, discrepancies between the theory underpinning the B proxies, and mineralogical observations of B coordination in biomineral carbonates call the basis of these proxies into question. Here, we use synchrotron X-ray spectromicroscopy to show that B is hosted solely as trigonal BO3 in the calcite test of Amphistegina lessonii, and that B concentration exhibits banding at the micron length scale. In contrast to previous results, our observation of trigonal B agrees with the predictions of the theoretical mechanism behind B palaeoproxies. These data strengthen the use of B for producing palaeo-pH records. The observation of systematic B heterogeneity, however, highlights the complexity of foraminiferal biomineralisation, implying that B incorporation is modulated by biological or crystal growth processes.We would like to acknowledge David Nicol, Iris Buisman and Martin Walker for invaluable technical assistance, and James Bryson for his help with synchrotron data collection. Wewould like to thank Jean DeMouthe (California Academy of Sciences) and Mike Rumsey (Natural History Museum, London) for provision of B-containing minerals for use as reference materials. This work was funded by ERC (grant 2010-ADG-267931 to HE), NERC, Jesus College (Cambridge)and the US Department of Energy (via ALS).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0012821X15000849

    Escherichia coli MazF Leads to the Simultaneous Selective Synthesis of Both “Death Proteins” and “Survival Proteins”

    Get PDF
    The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful

    The functional landscape of mouse gene expression

    Get PDF
    BACKGROUND: Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. RESULTS: We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. CONCLUSIONS: We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics

    Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation

    Get PDF
    Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast to earlier methods, the high temperature stability of mesoporous titania is enabled by the self-assembly of the amphiphilic block copolymer polyisoprene-block-polyethylene oxide (PI-b -PEO) which compartmentalises TiO2 crystallisation, preventing the collapse of porosity at temperatures up to 700 degrees C. The systematic study of the temperature dependence on DSC performance reveals a parameter trade-off: high temperature annealed anatase consisted of larger crystallites and had a higher conductivity, but this came at the expense of a reduced specific surface area. While the reduction in specific surface areas was found to be detrimental for liquid-electrolyte DSC performance, solid-state DSCs benefitted from the increased anatase conductivity and exhibited a performance increase by a factor of three

    High-throughput mutational analysis of TOR1A in primary dystonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the c.904_906delGAG mutation in Exon 5 of <it>TOR1A </it>typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A) has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify <it>TOR1A </it>Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia.</p> <p>Methods</p> <p>High resolution melting (HRM) was used to examine the entire <it>TOR1A </it>Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia) and 250 controls (150 neurologically normal and 100 with other movement disorders). Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia.</p> <p>Results</p> <p>HRM of <it>TOR1A </it>Exon 5 showed high (100%) diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the <it>TOR1A </it>ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1) a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2) an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia.</p> <p>Conclusion</p> <p>First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in <it>TOR1A </it>are rarely associated with non-generalized primary dystonia.</p
    corecore